Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Wang Xinling, Kang Xiandong, Li Ke, Huang Weidong. FATIGUE DAMAGE MECHANISM OF HRBF500 RC BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 45-48. doi: 10.13204/j.gyjz201311011
Citation: ZHANG Chao, DENG Zhicong, HOU Zeyu, CHEN Chun, ZHANG Yamei. RESEARCH PROGRESS OF 3D PRINTING FOR CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(8): 16-21. doi: 10.13204/j.gyjzG20052510

RESEARCH PROGRESS OF 3D PRINTING FOR CONCRETE

doi: 10.13204/j.gyjzG20052510
  • Received Date: 2020-04-30
  • With the advantages of free-form construction, labor and material saving, and environmental protection, 3D printing of concrete attracts more and more attention and develops rapidly. The key points of 3D printing technology include the preparation of materials, the determination of printing parameters and the formation of hardening properties of 3D-printed concrete. Based on the current research results, the paper summarized and discussed the printability and material composition, printing parameters and process control, as well as the hardening performance of 3D printing concrete, which is meaningful for the practice of 3D printing concrete engineering.
  • 丁烈云, 徐捷, 覃亚伟. 建筑3D打印数字建造技术研究应用综述[J]. 土木工程与管理学报, 2015(3):1-10.
    石从黎, 林宗浩, 陈敬,等. 3D打印混凝土技术的初探[J]. 重庆建筑, 2017(3):24-27.
    LEE J, AN J, CHU A C. Fundamentals and Applications of 3D Printing for Novel Materials[J]. Applied Materials Today, 2017:120-133.
    PEGNA J. Exploratory Investigation of Solid Freeform Construction[J]. Automation in Construction, 1997, 5(5):427-437.
    ZHANG J, WANG J, DONG S, et al. A Review of the Current Progress and Application of 3D Printed Concrete[J]. Composites Part A, 2019, 125. DOI: 10.1016/j.compositesa.2019.105533.
    PANDA B, RUAN S, UNLUER C, et al. Investigation of the Properties of Alkali-Activated Slag Mixes Involving the Use of Nanoclay and Nucleation Seeds for 3D Printing[J]. Composites Part B, 2020, 186. DOI: 10.1016/j.compositesb.2020.107826.
    SCHUTTER G, LESAGE K, MECHTCHERINE V, et al. Vision of 3D Printing with Concrete:Technical, Economic and Environmental Potentials[J]. Cement & Concrete Research, 2018, 112:25-36.
    王香港, 王申, 贾鲁涛, 等. 3D打印混凝土技术在新冠肺炎防疫方舱中的应用[J]. 混凝土与水泥制品, 2020(4):1-4,13.
    LONG W, TAO J, LIN C, et al. Rheology and Buildability of Sustainable Cement-Based Composites Containing Micro-Crystalline Cellulose for 3D-Printing[J]. Journal of Cleaner Production, 2019, 239. DOI: 10.1016/j.jclepro.2019.118054.
    NERELLA V, NÄTHER M, IQBAL A, et al. Inline Quantification of Extrudability of Cementitious Materials for Digital Construction[J]. Cement & Concrete Composites, 2019, 95:260-270.
    NERELLA V, BEIGH M, FATAEI S, et al. Strain-Based Approach for Measuring Structural Build-Up of Cement Pastes in the Context of Digital Construction[J]. Cement & Concrete Research, 2019, 115:530-544.
    ROUSSEL N. Rheological Requirements for Printable Concretes[J]. Cement & Concrete Research, 2018, 112:76-85.
    KETEL S, FALZONE G, WANG B, et al. A Printability Index for Linking Slurry Rheology to the Geometrical Attributes of 3D-Printed Components[J]. Cement & Concrete Composites, 2018,101:32-43.
    DELPHINE M, SHIHO K, HELA B, et al. Hydration and Rheology Control of Concrete for Digital Fabrication:Potential Admixtures and Cement Chemistry[J]. Cement & Concrete Research, 2018, 112:96-110.
    MEWIS J, WAGNER N. Thixotropy[J]. Advances in Colloid & Interface Science, 2009, 147-148:214-227.
    ZHANG C, HOU Z, CHEN C, et al. Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement Paste and Optimum Aggregate Content[J]. Cement & Concrete Composites, 2019, 104. DOI: 10.1016/j.cemconcomp.2019.103406.
    HEIKAL M, IBRAHIM N. Hydration, Microstructure and Phase Composition of Composite Cements Containing Nano-Clay[J]. Construction & Building Materials, 2016, 112:19-27.
    PERROT A, RANGEARD D, PIERRE A. Structural Built-up of Cement-Based Materials Used for 3D-Printing Extrusion Techniques[J]. Materials & Structures, 2016, 49(4):1213-1220.
    CHEN Y, FIGUEIREDO S, YALÇINKAYA Ç, et al. The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printing[J]. Materials, 2019, 12(9).DOI: 10.33901ma12091374.
    PANDA B, UNLUER C, TAN M J. Investigation of the Rheology and Strength of Geopolymer Mixtures for Extrusion-Based 3D Printing[J]. Cement & Concrete Composites, 2018, 94:307-314.
    PANDA B, TAN M J. Experimental Study on Mix Proportion and Fresh Properties of Fly Ash Based Geopolymer for 3D Concrete Printing[J]. Ceramics International, 2018, 44:10258-10265.
    SUN C, XIANG J, XU M, et al. 3D Extrusion Free Forming of Geopolymer Composites:Materials Modification and Processing Optimization[J]. Journal of Cleaner Production, 2020, 258.DOI: 10.1016/j.jclepro.2020.120986.
    MA G, LI Z, WANG L. Printable Properties of Cementitious Material Containing Copper Tailings for Extrusion Based 3D Printing[J]. Construction & Building Materials, 2018, 162:613-627.
    WENG Y, LI M, TAN M J, et al. Design 3D Printing Cementitious Materials via Fuller Thompson Theory and Marson-Percy Model[J]. Construction & Building Materials, 2018, 163:600-610.
    HAMBACH M, VOLKMER D. Properties of 3D-Printed Fiber-Reinforced Portland Cement Paste[J]. Cement & Concrete Composites, 2017, 79:62-70.
    MA G, LI Z, WANG L, et al. Mechanical Anisotropy of Aligned Fiber Reinforced Composite for Extrusion-Based 3D Printing[J]. Construction & Building Materials, 2019, 202:770-783.
    WENG Y, LU B, LI M, et al. Empirical Models to Predict Rheological Properties of Fiber Reinforced Cementitious Composites for 3D Printing[J]. Construction & Building Materials, 2018, 189:676-685.
    LI V C, BOS F P, YU K, et al. On the Emergence of 3D Printable Engineered, Strain Hardening Cementitious Composites (ECC/SHCC)[J]. Cement & Concrete Research, 2020, 132.DOI: 10.1016/j.cemconres.2020.106038.
    SOLTAN D G, LI V C. A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing[J]. Cement & Concrete Composites, 2018, 90:1-13.
    OGURA H, NERELLA V N, MECHTCHERINE V. Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D-Printing[J]. Materials, 2018,11(8).DOI: 10.3390/ma11081375.
    GOSSELIN C, DUBALLET R, ROUX P, et al. Large-Scale 3D Printing of Ultra-High Performance Concrete:A New Processing Route for Architects and Builders[J]. Materials & Design, 2016, 100:102-109.
    TAY Y, LI M, TAN M. Effect of Printing Parameters in 3D Concrete Printing:Printing Region and Support Structures[J]. Journal of Materials Processing Technology, 2019, 271:261-270.
    BUSWELL R, LEAL D, JONES S, et al. 3D Printing Using Concrete Extrusion:A Roadmap for Research[J]. Cement & Concrete Research, 2018,112:37-49.
    XU J, DING L, CAI L, et al. Volume-Forming 3D Concrete Printing Using a Variable-Size Square Nozzle[J]. Automation in Construction, 2019, 104:95-106.
    TAY D,QIAN Y,TAN J. Printability Region for 3D Concrete Printing Using Slump and Slump Flow Test[J]. Composites Part B, 2019, 174. DOI: 10.1016/j.compositesb.2019.106968.
    MECHTCHERINE V, BOS F, PERROT A, et al. Extrusion-Based Additive Manufacturing with Cement-Based Materials-Production Steps, Processes, and Their Underlying Physics:A Review[J]. Cement & Concrete Research, 2020, 132.DOI: 10.1016/j.cemconres.2020.106037.
    LIU Z, LI M, WENG Y, et al. Modelling and Parameter Optimization for Filament Deformation in 3D Cementitious Material Printing Using Support Vector Machine[J]. Composites Part B, 2020,193.DOI: 10.1016/j.compositesb.2020.108018.
    WANGLER T, ROUSSEL N, BOS F, et al. Digital Concrete:A Review[J]. Cement & Concrete Research, 2019, 123.DOI: 10.1016/j.cemconres.2019.105780.
    WOLFS R, BOS F, SALET T. Early Age Mechanical Behaviour of 3D Printed Concrete:Numerical Modelling and Experimental Testing[J]. Cement & Concrete Research, 2018, 106:103-116.
    LEX R, TIMOTHY W, NICOLAS R, et al. The Role of Early Age Structural Build-up in Digital Fabrication with Concrete[J]. Cement & Concrete Research, 2018,112:86-95.
    JAYATHILAKAGE R, RAJEEV P, SANJAYAN J. Yield Stress Criteria to Assess the Buildability of 3D Concrete Printing[J]. Construction & Building Materials, 2020, 240.DOI: 10.1016/j.conbuildmat.2019.117989.
    KRUGER J, ZERANKA S, ZIJL G. 3D Concrete Printing:A Lower Bound Analytical Model for Buildability Performance Quantification[J]. Automation in Construction, 2019, 106.DOI: 10.1016/j.autcon.2019.102904.
    KRUGER J, CHO S, ZERANKA S, et al. 3D Concrete Printer Parameter Optimisation for High Rate Digital Construction Avoiding Plastic Collapse[J]. Composites Part B, 2020, 183.DOI: 10.1016/j.compositesb.2019.107660.
    KAZEMIAN A, YUAN X, COCHRAN E, et al. Cementitious Materials for Construction-Scale 3D Printing:Laboratory Testing of Fresh Printing Mixture[J]. Construction & Building Materials, 2017, 145:639-647.
    LE T, AUSTIN S, LIM S, et al. Hardened Properties of High-Performance Printing Concrete[J]. Cement & Concrete Research, 2012, 42(3):558-566.
    RAHUL A, SANTHANAM M, MEENA H, et al. Mechanical Characterization of 3D Printable Concrete[J]. Construction & Building Materials, 2019,227.DOI: 10.1016/j.conbuildmat.2019.116710.
    PANDA B, CHANDRA P, JEN T. Anisotropic Mechanical Performance of 3D Printed Fiber Reinforced Sustainable Construction Material[J]. Materials Letters, 2017, 209:146-149.
    MECHTCHERINE, V, NERELLA V, FRANK W, et al. Large-Scale Digital Concrete Construction-CONPrint3D Concept for On-Site, Monolithic 3D-Printing[J]. Automation in Construction, 2019, 107.DOI: 10.1016/j.autcon.2019.102933.
    SANJAYAN J, NEMATOLLAHI B, XIA M, et al. Effect of Surface Moisture on Inter-Layer Strength of 3D Printed Concrete[J]. Construction & Building Materials, 2018, 172:468-475.
    KEITAA E, BESSAIES-BEYB H, ZUO W, et al. Weak Bond Strength Between Successive Layers in Extrusion-Based Additive Manufacturing:Measurement and Physical Origin[J]. Cement & Concrete Research, 2019, 123.DOI: 10.1016/j.cemconres.2019.105787.
    WOLFS R, BOS F, SALET T. Hardened Properties of 3D Printed Concrete:The Influence of Process Parameters on Interlayer Adhesion[J]. Cement & Concrete Research, 2019, 119:132-140.
    PUTTEN J G, SCHUTTER D, TITTELBOOM K. The Effect of Print Parameters on the (Micro)Structure of 3D Printed Cementitious Materials[C]//First RILEM International Conference on Concrete and Digital Fabrication.Zurich:2018.
    NERELLA V, HEMPEL S, MECHTCHERINE V. Micro-and Macroscopic Investigations on the Interface Between Layers of 3D-Printed Cementitious Elements[C]//Proceedings of the International Conference on Advances in Construction Materials and Systems. Chennai:2017.
    CHEN Y, FIGUEIREDO S, LI Z, et al. Improving Printability of Limestone-Calcined Clay-Based Cementitious Materials by Using Viscosity-Modifying Admixture[J]. Cement & Concrete Research, 2020, 132.DOI: 10.1016/j.cemconres.2020.106040.
    NERELLA V, HEMPEL S, MECHTCHERINE V. Effects of Layer-Interface Properties on Mechanical Performance of Concrete Elements Produced by Extrusion-Based 3D-Printing[J]. Construction & Building Materials, 2019, 205:586-601.
    MA G, SALMAN N, WANG L, et al. A Novel Additive Mortar Leveraging Internal Curing for Enhancing Interlayer Bonding of Cementitious Composite for 3D Printing[J]. Construction & Building Materials, 2020, 244.DOI: 10.1016/j.conbuildmat.2020.118305.
    WANG L, TIAN Z, MA G, et al. Interlayer Bonding Improvement of 3D Printed Concrete with Polymer Modified Mortar:Experiments and Molecular Dynamics Studies[J]. Cement & Concrete Composites, 2020, 110.DOI: 10.1016/j.cemconcomp.2020.103571.
    MARCHMENT T, SANJAYAN J, XIA M. Method of Enhancing Interlayer Bond Strength in Construction Scale 3D Printing with Mortar by Effective Bond Area Amplification[J]. Materials & Design, 2019, 169.DOI: 10.1016/j.matdes.2019.107684.
    HOSSEINI E, ZAKERTABRIZI M, KORAYEM A, et al. A Novel Method to Enhance the Interlayer Bonding of 3D Printing Concrete:An Experimental and Computational Investigation[J]. Cement & Concrete Composites, 2019, 99:112-119.
    ASPRONE D, AURICCHIO F, MENNA C, et al. 3D Printing of Reinforced Concrete Elements:Technology and Design Approach[J]. Construction & Building Materials, 2018, 165:218-231.
    VANTYGHEM G, CORTE W, SHAKOUR E, et al. 3D Printing of a Post-Tensioned Concrete Girder Designed by Topology Optimization[J]. Automation in Construction, 2020, 112.DOI: 10.1016/j.autcon.2020.103084.
    LE T, AUSTIN S, LIM S, et al. Mix Design and Fresh Properties for High-Performance Printing Concrete[J]. Materials & Structures, 2012, 45(8):1221-1232.
  • Relative Articles

    [1]ZHANG Xue, MEN Jinjie, RONG Qiang, QIAO Dehao. Research on Prediction Models of Flexural Capacity of Corroded RC Beams Based on Ensemble Learning[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 128-137. doi: 10.3724/j.gyjzG24012901
    [2]LIU Bin, YANG Jiaqi, LIU Tianqiao, HU Lili, FENG Peng. Finite Element Analysis of Reinforced Concrete Beams Strengthened with Prestressed CFRP Plates with High Ductility[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 72-80. doi: 10.3724/j.gyjzG23111328
    [3]SONG Songke, DU Taoming, YANG Tao, ZHANG Qinghua. Coupling Effect Mechanism of Pavement Characteristics on Fatigue Damage of Orthotropic Steel Decks[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 229-237. doi: 10.3724/j.gyjzG21122303
    [4]HOU Chongchi, WANG Kaixuan, ZHENG Wenzhong, LIU Yuchen, ZHANG Lijia, LI Hongbin. Seismic Performance and Cumulative Damage Analysis of Concrete Columns Confined by High-Strength Stirrups[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 133-142. doi: 10.13204/j.gyjzG22111310
    [5]ZHU Linxuan, ZHANG Mingyi, CHEN Chaoran, ZHOU Zhijun, WANG Miaomiao. Prediction of Carbonation Depth of Reinforced Concrete Beams Under Cyclic Flexural Loads[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 139-143,212. doi: 10.13204/j.gyjzG21112513
    [6]LI Bin, LUO Yanyan, LI Xingbo. Seismic Performance Test and Finite Element Analysis of Monolithic Precast Shear Wall with Partially-Connected Vertical Distributed Steel Bars[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 51-59,23. doi: 10.13204/j.gyjzG21040601
    [7]HU Wenhao, GUO Rui, REN Yu. Study on the Flexural Capacity of RC Beams Strengthened with FRP Grids Based on the Bond-Slip Cohesive Model[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 216-226. doi: 10.13204/j.gyjzG21062512
    [8]CUI Honghuan, HE Jingyun, ZHANG Zhenhuan, YANG Xingran, WANG Xiaojing. A FREEZE-THAW DAMAGE MODEL OF CEMENT-SOLIDIFIED SOIL IN SEASONAL FROZEN SOIL ZONES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 158-163. doi: 10.13204/j.gyjzG20072406
    [9]GAO Ziqi, ZHANG Jintao, ZHANG Hao, HAO Han, GUO Rui. FINITE ELEMENT ANALYSIS OF FLEXURAL BEHAVIOR OF DAMAGED RC BEAMS REINFORCED BY FRP[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 44-50,43. doi: 10.13204/j.gyjzG20110321
    [10]Zhu Chenfei, Liu Xiaojun, Li Wenzhe, Wu Yonggen, Liu Qingtao. STUDY OF FREEZE-THAW DURABILITY AND DAMAGE MODEL OFHYBRID FIBER CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 10-14. doi: 10.13204/j.gyjz201502003
    [11]Wang Zheng, Shi Qingxuan. COMPARATIVE ANANLYSIS OF SHEAR CAPACITY FOR REINFORCED CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 105-109,138. doi: 10.13204/j.gyjz201307024
    [12]Wang Yutian, Zhang Wei, Jiang Fuxiang. EXPERIMENT ON THE BENDING PERFORMANCE OF CFRP REINFORCED PRE-DAMAGED REINFORCED CONCRETE BEAM UNDER SEAWATER ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 99-103. doi: 10.13204/j.gyjz201302020
    [13]Jia Jinqing, Zhang Lihua, Meng Gang. CALCULATION METHOD FOR DAMAGE INDEX OF RC BEAM UNDER FATIGUE LOADING[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 54-58. doi: 10.13204/j.gyjz201208012
    [14]Liao Yanfen, Qi Yaqing, Ma Xiaoqian. NONLINEAR FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BEAMS IN FIRE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 31-37. doi: 10.13204/j.gyjz201107007
    [15]Wang Xinling, Chen Qingping, Du Lin. EXPERIMENTAL RESEARCH ON HRBF500 HIGH STRENGTH RC BEAMS FOR HIGH SPEED RAILWAY UNDER FATIGUE LOADING[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(11): 18-21,26. doi: 10.13204/j.gyjz201011006
    [16]Jiang Chaowen, Zhang Jiwen. NON-LINEAR ANALYSIS OF CONCRETE BEAM-COLUMN ASSEMBLIES REINFORCED WITH FINE GRAINED HIGH STRENGTH STEEL BARS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 40-44. doi: 10.13204/j.gyjz200911010
    [17]Zhao Yong, Wang Xiaofeng, Su Xiaozu, Cheng Zhijun. EXPERIMENTAL RESEARCH ON THE EFFECTS OF SURFACE REINFORCEMENT ON CRACK SPACING AND WIDTH OF REINFORCED CONCRETE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 29-32. doi: 10.13204/j.gyjz200911008
    [18]Hu Ling, Yang Yongxin, Wang Quanfeng, Xu Yuye, Wang Jiangen. EXPERIMENTAL STUDY ON BOND ANCHORAGE PROPERTIES OF HRBF500 STEEL BARS IN CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(11): 13-16,44. doi: 10.13204/j.gyjz200911004
    [19]Liu Ronggui, Fu Kai, Yan Tingcheng. THE FATIGUE PROPERTIES OF PRE-STRESSED CONCRETE STRUCTURE UNDER THE CONDITIONS OF FREEZE-THAW CYCLE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 75-78. doi: 10.13204/j.gyjz200811018
    [20]Ouyang Yu, Wang Peng, Zhang Yunchao. CALCULATION AND ANALYSIS OF FLEXURAL AND SHEAR CAPACITY OF RC BEAMS STRENGTHENED WITH BFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(6): 24-27. doi: 10.13204/j.gyjz200706007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (284) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return