Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
MA Sen, ZHAO Qilin. RESEARCH ON THE STABILITY OF COMPOSITE VARIABLE CROSS-SECTION COMPRESSION STRUTS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 202-206,229. doi: 10.13204/j.gyjzG20051212
Citation: MA Sen, ZHAO Qilin. RESEARCH ON THE STABILITY OF COMPOSITE VARIABLE CROSS-SECTION COMPRESSION STRUTS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 202-206,229. doi: 10.13204/j.gyjzG20051212

RESEARCH ON THE STABILITY OF COMPOSITE VARIABLE CROSS-SECTION COMPRESSION STRUTS

doi: 10.13204/j.gyjzG20051212
  • Received Date: 2020-05-12
    Available Online: 2022-01-11
  • Based on the idea of the equivalent parameters method and energy method, the theoretical formula of composite variable cross-section struts was deduced. Firstly, the wall of the composite compression strut was equivalent to an orthotropic shell whose main axis direction was consistent with the axial direction of the strut based on the idea of the equivalent parameters method, then, the composite strut could be approximated as an orthotropic strut. Thirdly, aiming at the orthotropic compression strut, the buckling deflection equation of compression structs was assumed, and the formula for the theoretical stability load was deduced based on the energy method. Finally, the accuracy of the formula was verified and discussed by comparison with ones by the finite element method, the results showed that:the theory formula in could accurately predict the critical load of the composite variable cross-section compression strut.
  • [1]
    刘士明. 工程起重机伸缩臂系统结构稳定性及复合运动动力学研究[D]. 哈尔滨:哈尔滨工业大学, 2013.
    [2]
    张云龙. 基于变截面支撑的半刚性钢框架抗震性能研究[D]. 哈尔滨:哈尔滨工业大学, 2013.
    [3]
    JEGLEY D C, WU K C, PHELPS J E, et al. Structural Efficiency of Composite Struts for Aerospace Applications[J]. Journal of Spacecraft and Rockets, 2012, 49(5):915-924.
    [4]
    杨瑞芳, 刘海智, 韩宝生. 浅谈压杆稳定理论在工程上的应用[J]. 内蒙古农业大学学报(自然科学版), 2012, 33(1):143-147.
    [5]
    戴保东, 郑荣, 吉子轩. 变截面压杆稳定计算的有限元法[J]. 山西机械, 2000(3):16-8.
    [6]
    卞敬玲, 王小岗. 变截面压杆稳定计算的有限单元法[J]. 武汉大学学报(工学版), 2002,35(4):102-104.
    [7]
    谢扬波, 龙小艳. 有限元分析变截面压杆的稳定问题[J]. 黑龙江科技信息, 2012(23):284.
    [8]
    楼梦麟, 李建元. 变截面压杆稳定问题半解析解[J]. 同济大学学报(自然科学版), 2004, 32(7):857-860.
    [9]
    杨立军, 邓志恒, 吴晓, 等. 变截面压杆弹性稳定的解析解[J]. 河南理工大学学报(自然科学版), 2013(1):85-88.
    [10]
    ZHANG D, ZHAO Q, LI F, et al. Torsional Behavior of a Hybrid FRP-Aluminum Space Truss Bridge:Experimental and Numerical Study[J]. Engineering Structures, 2018(157):132-143.
    [11]
    JEGLEY D C, WU K C, PHELPS J E, et al. Evaluation of Long Composite Struts[J]. NASA/TM, 2011(217049):1-17.
    [12]
    VINSON J R, SIERAKOWSKI R L. The Behavior of Structures Composed of Composite Materials[M]. Dordrecht:Kluwer Academic Publishers, 2006.
    [13]
    WU K C, JEGLEY D C, BARNARD A, et al. Highly Loaded Composite Strut Test Results[C]//SEICO 11, SAMPE Europe 32nd International Conference and Forum. 2011.
    [14]
    DEO R, BENNER H, VINCENT D, et al. Design of Structurally Efficient Tapered Struts (SETS)[J]. NASA/CR, 2010(216699):1-21.
    [15]
    刘鸿文. 材料力学:下册[M]. 北京:高等教育出版社,2004.
    [16]
    胡更开. 复合材料力学[M]. 北京:清华大学出版社, 2006.
    [17]
    刘文庆, 姜秉元. 对称复合材料层板弹性模量和泊松比的计算[J]. 宇航材料工艺, 2003(3):53-56.
    [18]
    张晓霞, 周柏卓. 正交各向异性材料弹性本构关系分析[J]. 航空发动机, 1997(1):20-25.
  • Relative Articles

    [2]Pan Jinlong, Wang Jun, Liu Weiqing, Zhao Huimin. EXPERIMENTAL AND THEORETICAL STUDY OF CREEP BEHAVIOR OF GLASS FIBER REINFORCED POLYMER ( GFRP) COMPOSITES IN ATMOSPHERIC AND CHLORIDE ION ENVIRONMENT[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(4): 127-131. doi: 10.13204/j.gyjz201504024
    [3]Sun Min, Tong Liping, Zhang Yuguo. SENSITIVITY RESEARCH OF DAMPING ENERGY DISSIPATION FOR SLIDING BASE-ISOLATED STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 55-60. doi: 10.13204/j.gyjz201505013
    [4]Sun Huiming, Fang Hai, Zhu Lu, Liu Weiqing, Xu Chao. EXPERIMENTAL AND THEORETICAL STUDY OF COMPOSITE SANDWICH COLUMN UNDER AXIAL COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(02): 59-63. doi: 10.13204/j.gyjz201402014
    [5]Shen Ruihong, Tong Genshu. BUCKLING OF TIMOSHENKO COLUMNS WITH LINEARLY VARIED RIGIDITIES AND AXIAL FORCES[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 8-12,18. doi: 10.13204/j.gyjz201304002
    [6]Tong Genshu, Li Lanxiang. OUT-PLANE BUCKLING OF TAPERED BEAM-COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(2): 83-89. doi: 10.13204/j.gyjz201102021
    [7]Guo Yanlin, Liu Tao. DIRECT STRENGTH METHOD OF ULTIMATE LOAD-CARRYING CAPACITY OF WELDED BOX-SECTION COLUMNS SUBJECTED TO LOCAL BUCKLING[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(9): 41-48. doi: 10.13204/j.gyjz200909008
    [8]Guo Yanlin, Jiang Leixin, Zhang Enuo. RESEARCH ON IN-PLANE STABILITY BEARING CAPACITY OF LIPPED H-SECTION TAPERED MEMBERS UNDER COMPRESSION AND BENDING[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(9): 32-35. doi: 10.13204/j.gyjz200909006
    [9]Guo Yanlin, Jiang Leixin, Zhang Enuo. LIMIT STRENGTH OF LIPPED H-SECTION MEMBERS UNDER BOTH COMPRESSION AND BENDING[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(9): 22-27,14. doi: 10.13204/j.gyjz200909004
    [10]Liu Tao, Guo Yanlin. DIRECT STRENGTH METHOD OF WELDED BOX-SECTION FOR PREDICTING ULTIMATE LOAD-CARRYING CAPACITY[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(9): 36-40. doi: 10.13204/j.gyjz200909007
    [11]Deng Changgen, Zhu Wenmei. SIMPLIFIED BUCKLING ANALYSIS OF STEEL COMPRESSION MEMBERS STRENGTHENED WITH CFRP[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(3): 106-108122. doi: 10.13204/j.gyjz200803028
    [12]Xu Han-yong, . THE INFLUENCE OF THE STIFFNESS OF CROSS DIRECTION SUPPORT ON THE STABILITY OF CENTRALLY COMPRESSED STEEL TUBE[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(10): 72-74. doi: 10.13204/j.gyjz200610020
    [13]Chen Ting, Tong Genshu. ELASTOPLASTIC STABILITY OF TAPERED COMPRESSED MEMBERS[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(10): 62-65,84. doi: 10.13204/j.gyjz200410019
  • Cited by

    Periodical cited type(4)

    1. 刘港,马森,郭晨明,赵启林,李飞. 基于正交试验的新型复合材料圆柱壳结构优化设计. 机械设计与制造工程. 2024(06): 13-17 .
    2. 肖珍,陈宇东,李政,赵恒. 变截面柱及型钢格构柱的屈曲载荷分析. 工程与试验. 2024(02): 12-14 .
    3. 吴晓,肖珍. 用二阶共轭方程近似解研究楔形杆振动及屈曲. 湖南师范大学自然科学学报. 2024(03): 137-142 .
    4. 段淏,宋召军,万琪,李晓彬. 921A钢板架欧拉应力计算的标准适用性研究. 中国造船. 2023(06): 123-133 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 5.5 %FULLTEXT: 5.5 %META: 92.6 %META: 92.6 %PDF: 1.8 %PDF: 1.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.8 %其他: 9.8 %其他: 1.2 %其他: 1.2 %China: 0.6 %China: 0.6 %上海: 1.8 %上海: 1.8 %东莞: 0.6 %东莞: 0.6 %北京: 3.7 %北京: 3.7 %南京: 2.5 %南京: 2.5 %南通: 0.6 %南通: 0.6 %大连: 0.6 %大连: 0.6 %天津: 1.8 %天津: 1.8 %威海: 4.3 %威海: 4.3 %宁波: 0.6 %宁波: 0.6 %安阳: 1.2 %安阳: 1.2 %宣城: 2.5 %宣城: 2.5 %常德: 1.2 %常德: 1.2 %广州: 0.6 %广州: 0.6 %延安: 1.2 %延安: 1.2 %成都: 1.2 %成都: 1.2 %扬州: 1.8 %扬州: 1.8 %新乡: 3.7 %新乡: 3.7 %昆明: 1.2 %昆明: 1.2 %晋城: 0.6 %晋城: 0.6 %朝阳: 3.1 %朝阳: 3.1 %杭州: 5.5 %杭州: 5.5 %柳州: 0.6 %柳州: 0.6 %桂林: 0.6 %桂林: 0.6 %武汉: 1.2 %武汉: 1.2 %淮南: 1.2 %淮南: 1.2 %温州: 1.8 %温州: 1.8 %漯河: 10.4 %漯河: 10.4 %益阳: 0.6 %益阳: 0.6 %石家庄: 1.2 %石家庄: 1.2 %秦皇岛: 0.6 %秦皇岛: 0.6 %芒廷维尤: 10.4 %芒廷维尤: 10.4 %芝加哥: 2.5 %芝加哥: 2.5 %西宁: 3.7 %西宁: 3.7 %西安: 1.8 %西安: 1.8 %贵阳: 0.6 %贵阳: 0.6 %运城: 6.1 %运城: 6.1 %邯郸: 0.6 %邯郸: 0.6 %郑州: 3.1 %郑州: 3.1 %阳泉: 0.6 %阳泉: 0.6 %其他其他China上海东莞北京南京南通大连天津威海宁波安阳宣城常德广州延安成都扬州新乡昆明晋城朝阳杭州柳州桂林武汉淮南温州漯河益阳石家庄秦皇岛芒廷维尤芝加哥西宁西安贵阳运城邯郸郑州阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (149) PDF downloads(4) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return