Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WU Chengxia, XU Zhijun, PANG Zhaokun, YUAN Fang, JIANG Xuejia. TESTS AND NUMERICAL SIMULATION OF SIDE PRESSURE ON SILO WALLS BY STORAGE MATERIALS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(8): 68-73. doi: 10.13204/j.gyjzG20041307
Citation: WU Chengxia, XU Zhijun, PANG Zhaokun, YUAN Fang, JIANG Xuejia. TESTS AND NUMERICAL SIMULATION OF SIDE PRESSURE ON SILO WALLS BY STORAGE MATERIALS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(8): 68-73. doi: 10.13204/j.gyjzG20041307

TESTS AND NUMERICAL SIMULATION OF SIDE PRESSURE ON SILO WALLS BY STORAGE MATERIALS

doi: 10.13204/j.gyjzG20041307
  • Received Date: 2020-04-13
    Available Online: 2021-11-10
  • Publish Date: 2021-11-10
  • The dynamic pressure of silo discharging is the main cause of silo wall failure, and the type of storage material were is an important factor affecting dynamic pressure. The silo discharging tests were conducted on the silos infilled with three kinds of storage materials: soybean, wheat and sand. Based on the test, a numerical simulation model of grain flow during discharging was established.The dynamic side pressures and overpressure coefficients of different storage materials during discharging process were compared to explore the influence law of different storage materials on dynamic pressure.The results showed that:1) The maximum overpressure coefficients of the three kinds of storage materials were 2.27, 1.52 and 1.24 respectively, located near 1/3 of the silo height. 2) The falling speed of the silo side wall was less than that of the middle part of the silo, because the dense force chain network on the silo wall inhibited the flow of the storage material near the silo wall and led to the increase of side pressure. 3) By observing the particle force chain network, it was found that the contact forces were concentrated near the silo wall, and it was sparse at the middle part of silo, presenting the form of dynamic arch. The contact force of arch foot was used for the silo wall, which was the main reason for the increase of dynamic pressure.
  • [1]
    中华人民共和国住房和城乡建设部. 钢筋混凝土筒仓设计标准:GB 50077-2017[S].北京:中国计划出版社,2017.
    [2]
    JANSSEN H A. Experiments About Pressure of Grain in Silos[M]. VDI, 1895:1045-1049.
    [3]
    蒋锐, 薛晨曦, 段君峰.筒仓侧压力系数对比分析及修正研究[J]. 混凝土与水泥制品, 2018(4):50-52.
    [4]
    王珏, 韩阳, 段君峰. 粮食散体物料压力计算理论对比分析[J]. 现代食品, 2017(4):82-85.
    [5]
    曹庆帅. 大型钢筒仓在储料荷载及风荷载作用下的稳定性能[D]. 杭州:浙江大学, 2016.
    [6]
    张大英, 许启铿, 王树明,等.筒仓动态卸料过程侧压力模拟与验证[J]. 农业工程学报, 2017, 33(5):272-278

    , 316.
    [7]
    JAYAS D S, WHITE N D, MUIR W E. Stored-Grain Ecosystem[J]. Drying Technology, 1995, 13(4):1045-1046.
    [8]
    程绪铎. 筒仓中粮食卸载动态压力的研究与进展[J]. 粮食储藏, 2008, 37(5):20-24.
    [9]
    赵松. 筒仓贮料压力分析及其应用[D]. 武汉:武汉理工大学, 2013.
    [10]
    王世豪,肖昭然,刘克瑾.贮料粒径对筒仓卸料流态及仓壁压力影响的细观机理研究[J].河南工业大学学报(自然科学版),2017,38(6):86-90.
    [11]
    原方, 庞焜,董承英,等.带流槽侧壁卸料动态超压及流态的PFC~(3D)数值模拟[J].工程力学,2016,33(增刊1):301-305.
    [12]
    原方,李佳伟, 崔秀琴,等.粮食入仓自动分级现象PFC模拟及定量分析[J].中国粮油学报, 2018,33(3):96-99

    , 111.
    [13]
    傅磊, 谢洪勇, 刘桦. 散料在料仓内流动特性的实验研究[J]. 力学季刊, 2003, 24(4):482-487.
    [14]
    王广国, 杜明芳. 筒仓内散体物料侧压力分布研究[J]. 郑州粮食学院学报, 2000, 21(3):64-66

    ,69.
    [15]
    王尚荣. 基于图像处理的贮料流态对筒仓侧壁压力影响研究[D]. 郑州:河南工业大学, 2017.
    [16]
    李佳伟. 考虑仓径影响的筒仓卸料压力PFC数值模拟研究[D]. 郑州:河南工业大学,2018.
  • Relative Articles

    [1]LIU Changyong, WANG Qianfeng, HOU Chunping, XIAO Shuluan, WU Cong. STUDY ON UNIAXIAL DYNAMIC COMPRESSIVE MECHANICAL PROPERTIES OF FREEZE-THAW DETERIORATED CONCRETE IN FROZEN CONDITIONS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 111-116,121. doi: 10.13204/j.gyjzG19102507
    [2]ZHANG Chong, SHU Ganping. SHAKE TABLE TEST OF MODEL STEEL SILO AND RESEARCH OF SILO WALL PRESSURE BY SOLIDS UNDER SEISMIC FORCES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 133-138,155. doi: 10.13204/j.gyjzG19111107
    [3]Chen Lei, J.Michael Rotter, Peng Yiliang, Yang Guang. BUCKLING BEHAVIOUR OF SHELLS OF STEPPED WALL CYLINDERS UNDER UNIFORM EXTERNAL PRESSURE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 125-132. doi: 10.13204/j.gyjz201308027
    [4]Yuan Longfei, Li Xiaowen, Bai Guoliang, Kang Lingguo, Li Xu, Sun Wei. REFLECTIONS ON PROBLEMS OF EXISTING CODE FOR DESIGN OF REINFORCED CONCRETE SILOS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(1): 149-153,139. doi: 10.13204/j.gyjz201201029
    [5]Wang Tianfeng, Ding Zhichao, Wang Li, Ying XiaoLin. ANALYSIS OF INTEGRAL COLLAPSE OF A REINFORCED CONCRETE SILO[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(4): 116-118. doi: 10.13204/j.gyjz200804029
    [6]Xia Dongtao, Xu Lihua. EFFECTS OF TEMPERATURE LOAD ON GIANT REINFORCED CONCRETE COAL SILO[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(3): 80-82. doi: 10.13204/j.gyjz200603021
    [7]Chen Xuehua, Lv Wentian, Wang Yonghe, Leng Wuming. EXPERIMENTAL RESEARCH ON THE EARTH PRESSURE BEHIND ABUTMENT[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(10): 43-46. doi: 10.13204/j.gyjz200510014
  • Cited by

    Periodical cited type(6)

    1. 刘强,张茜茜,许启铿,丁永刚,孙启帅,王依峰. 基于离散单元法的立筒仓卸料动态侧压力数值模拟分析. 现代食品科技. 2024(06): 214-220 .
    2. 张大英,许启铿,杨庆贺,孙露馨. 筒承式群仓模型环境激励试验及动力参数识别. 河南工业大学学报(自然科学版). 2024(04): 109-116 .
    3. 徐志军,彭舒停,赵世鹏,范量,余汉华. 储粮仓仓壁动态侧压力的树模型预测方法. 科学技术与工程. 2024(26): 11158-11166 .
    4. 段君峰,韩阳,揣君. 静态储粮筒仓内部水平压力试验研究. 粮食与油脂. 2022(06): 80-84 .
    5. 李坤由. 浅谈粮食流通领域筒仓卸料研究方法. 现代食品. 2022(20): 1-4 .
    6. 陈佳,丁永刚,许启铿,刘强,索焕. 地震作用下柱承式筒仓动态侧压力计算方法研究. 地震工程与工程振动. 2022(06): 144-152 .

    Other cited types(9)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (206) PDF downloads(10) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return