Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
OU Jiajia, YANG Xuebing, WANG Xijun, LI Zheng. LATERAL PERFORMANCE OF CROSS-LAMINATED TIMBER WALLS WITH TWO DIFFERENT CONSTRUCTION TYPES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 84-87,113. doi: 10.13204/j.gyjz202003014
Citation: LI Wentao, JIA Junfeng, WANG Yuguo, LI Bin, WAN Siyi. EXPERIMENTAL RESEARCH ON MECHANICAL PROPERTIES OF NEW AND OLD CONCRETE JOINTS OF PREFABRICATED STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(2): 40-46. doi: 10.13204/j.gyjzG20032702

EXPERIMENTAL RESEARCH ON MECHANICAL PROPERTIES OF NEW AND OLD CONCRETE JOINTS OF PREFABRICATED STRUCTURE

doi: 10.13204/j.gyjzG20032702
  • Received Date: 2020-06-12
    Available Online: 2021-06-04
  • In the prefabricated bridge structure, the existing socket connection between the prefabricated pier and the bearing platform has no reinforcement passing through the joint interface, which has the problem of insufficient bond performance. In the paper, a new type of interface connection was proposed, namely the interface embedded distributed steel fiber connection technique. In order to study the influence of this new type of joint on the bond performance of new and old concrete interface, double-sided shear test and axial tensile test were designed respectively, and six test conditions were formulated, including integral pouring of plain concrete, integral pouring of reinforced concrete, chiseled connection of C40-C40 interface, chiseled connection of UHPC-C40 interface, embedded wave-shaped/end-hook-shaped steel fiber connection of UHPC-C40 interface, and the shear and tensile capacity of the interface were tested. The results showed that the shear bearing capacity of the steel fiber connection specimen was significantly higher than that of the chiseling treatment and the whole pouring of plain concrete, which is up to 86.5% of the whole pouring of reinforced concrete; the tensile bearing capacity of the steel fiber connection specimen was also significantly improved, and the UHPC-C40 interface was not cracked when the specimen was broken. In this paper, the feasibility of embedded distributed steel fiber technique for UHPC-NC new and old interface was preliminarily verified, and the shear strength and tensile strength of the joint could be effectively improved.
  • HARALDSSON O S, JANES T M,EBERHARD M O, et al. Seismic Resistance of Socket Connection Between Footing and Precast Column[J]. Journal of Bridge Engineering, 2013, 18(9):910-919.
    耿佳硕.采用UHPC现浇湿接缝连接的装配式桥墩抗震性能研究[D].郑州:郑州大学,2019.
    BU Z Y, WU W Y. Inter Shear Transfer of Unbounded Prestressing Precast Segmental Bridge Column Dry Joints[J]. Engineering Structures, 2018, 154(1):52-65.
    陈金彪.装配式桥梁预制空心桥墩与承台连接的研究与应用[D].合肥:合肥工业大学,2019.
    MARSH M L, STRINGER S J, STANTON J F, et al. Precast Bent System for High Seismic Regions:FHWA-HIF-13-037[R]. Washington D.C.:Federal Highway Administration, 2013.
    HARALDLSSON O S, JANES T M,EBERHARD M O,et al. Precast Bent System for High Seismic Regions:Laboratory Tests of Column-to-Footing Socket Connections[J].Bridge Construction, 2013. DOI: 10.21949/1506041.
    刘国梁. RPC/NC粘结试件的收缩性能研究[D]. 北京:北京交通大学,2018.
    WANG B, SHI L, LIU F, et al. Evaluation of Tensile Bonding Strength Between UHTCC Repair Materials and Concrete Substrate[J]. Construction and Building Materials, 2016,112:595-606.
    王孟伟. ECC与既有混凝土粘结性能的影响因素研究[D].南京:东南大学,2018.
    DIAB A M, ELMOATY A E M A, ELDIN M R T. Slant Shear Bond Strength Between Self Compacting Concrete and Old Concrete[J]. Construction and Building Materials, 2016, 130:73-82.
    TAZARV M, SAIIDI M S. UHPC-Filled Duct Connections for Accelerated Bridge Construction of RC Columns in High Seismic Zones[J]. Engineering Structures, 2015, 99(15):413-422.
    TAZARV M, SAIIDI M S. Design and Construction of UHPC-filled Duct Connections for Precast Bridge Columns in High Seismic Zones[J]. Structure and Infrastructure Engineering, 2016,13(6):1-11.
    HUSSEIN, HUSAM H. Interfacial Properties of Ultrahigh-Performance Concrete and High-Strength Concrete Bridge Connections[J]. Journal of Materials in Civil Engineering, 2016, 28(5). DOI: 10.1061/(ASCE)MT.1943-5533.0001456.
    BASSAM A, TAYEH B H, ABU B. Mechanical and Permeability Properties of the Interface Between Normal Concrete Substrate and Ultra High Performance Fiber Concrete Overlay[J].Construction and Building Materials, 2012, 36:538-548.
    CARBONELL M A. Bond Performance Between Ultrahigh-Performance Concrete and Normal-Strength Concrete[J]. Journal of Materials in Civil Engineering, 2014, 26(8). DOI: 10.1061/(ASCE)MT.1943-5533.0000890.
    吴香国, 张孝臣. 预制超高性能混凝土修复层与既有混凝土界面黏结短期性能研究[J]. 建筑结构学报, 2018, 39(10):156-163.
    苏庆田, 胡一鸣, 田乐, 等.用于组合梁桥面板湿接缝的弧形钢筋连接构造[J]. 中国公路学报, 2017, 30(9):86-92.
    ZHAO C, WANG K, ZHOU Q, et al. Full-Scale Test and Simulation on Flexural Behavior of Dovetail-Shaped Reactive Powder-Concrete Wet Joint in a Composite Deck System[J]. Journal of Bridge Engineering, 2018, 23(8). DOI: 10.1061/(ASCE)BE.1943-5592.0001265.
    PAN W H, FAN J S, NIE J G, et al. Experimental Study on Tensile Behavior of Wet Joints in a Prefabricated Composite Deck System Composed of Orthotropic Steel Deck and Ultrathin Reactive-Powder Concrete Layer[J]. Journal of Bridge Engineering, 2016, 21(10). DOI: 10.1061/(ASCE)BE.1943-5592.0000935.
    王景全, 王震, 高玉峰, 等. 预制桥墩体系抗震性能研究进展:新材料, 新理念, 新应用[J]. 工程力学, 2019, 36(3):1-23.
    SONG P S, HWANG S. Mechanical Properties of High-Strength Steel Fiber-Reinforced Concrete[J]. Construction and Building Materials, 2004, 18(9):669-673.
    张正先. 配有钢筋的新旧混混凝土界面连接试验研究[J]. 华南理工大学学报(自然科学版), 2002(10):98-102.
  • Relative Articles

    [1]ZHAO Yongqiang, ZHENG Zhiyuan, ZHANG Pengyuan, ZHANG Yujin, XU Qi, XU Yiming. Experimental Research on Seismic Performance of Prefabricated Concrete Shear Walls with Prefabricated Concrete Infill Walls[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(1): 108-120. doi: 10.13204/j.gyjzG22022114
    [2]PENG Zhiwei, KUANG Yachuan, CHEN Yujie, WANG Shaohua, MO Xiaofei. Research on Shear Performance of a New Type of Prefabricated Shear Wall with Alveolar-Type Connections[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(12): 135-142,210. doi: 10.13204/j.gyjzG22101829
    [3]PANG Rui, WANG Lu, LIU Yuhao, WANG Yixiao, DING Shusu. Experimental Research on Seismic Performance Test of Prefabricated Steel-Concrete Composite Tube Shear Walls[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 84-90. doi: 10.13204/j.gyjzG20050712
    [4]CHONG Xun, CHEN Zixing, JIANG Qing, HUANG Junqi, LI Haoran, FANG Xiaowen, XIE Jinchen. Research on Seismic Performance of Prefabricated Concrete Shear Wall Structures with Bolt Connections[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 12-18,90. doi: 10.13204/j.gyjzG21012705
    [5]LI Yun, LIU Yang, ZHANG Xianlong, HE Fujiangshan, FENG Ruoqiang. Research on Hysteretic Performance of Grid-Tube Double Steel Plate Shear Walls[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 32-38. doi: 10.13204/j.gyjzG21081212
    [6]WU Dongyue, PEND Xiangdong, LU Yinjie, CHEN Wei, WANG Shilin, WANG Xu, FU Qian. Experimental Research on Seismic Performance of Reinforced Tenon Precast Low-Rise Shear Walls[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 72-78. doi: 10.13204/j.gyjzg21070909
    [7]LIU Xinhu, HUANG Dadian. Research on Mechanical Properties of CLT Wall-to-Floor Joints with Angle Bracket[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 107-113. doi: 10.13204/j.gyjzG21081309
    [8]YU Hongran, WANG Yan, AN Qi. SEISMIC PERFORMANCE ANALYSIS OF ANCHORING PREFABRICATED WALL-BEAM JOINT OF STEEL TUBE BUNDLE COMPOSITE SHEAR WALL STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 84-94. doi: 10.13204/j.gyjzG20100401
    [9]LYU Yuangui, HU Longping, ZHANG Xiangchao, ZHANG Heng, LI Jianchuang, YU Min, CHI Yin. EXPERIMENTAL STUDY ON SEISMIC PERFORMANCE OF T-SHAPED PREFABRICATED CONCRETE SHEAR WALL CONNECTED WITH A VERTICAL SEAM[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 56-62. doi: 10.13204/j.gyjz201908300010
    [10]WANG Yuliang, CUI Hongjun, ZHANG Yumin, CAI Zhanjun, XU Lixian. EXPERIMENTAL RESEARCH ON SEISMIC BEHAVIOR OF PREFABRICATED SHEAR WALL WITH ENERGY DISSIPATION BY VERTICAL JOINTS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 46-51. doi: 10.13204/j.gyjzG19102703
    [11]CHONG, Xun, SONG, Lei, CHEN, Changlin, WANG. RESEARCH ON THE SEISMIC BEHAVIOR OF FACADE PANEL OF PREFABRICATED CONCRETE SHEAR WALL WITH DAMPER[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 40-46. doi: 10.13204/j.gyjz202001008
    [18]Yuan Kang, Li Yingmin, Zhang Songbai. STUDY OF UNIDIRECTIONAL WALL FRAMES' INFLUENCE ON THE SEISMIC PERFORMANCE OF SHEAR WALL STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(07): 37-41.
    [19]Tu Yongming, Lv Zhitao, Zhang Jiwen, Chen Jie, Qian Yang. LATERAL PERFORMANCE OF THE MAIN STRUCTURE OF CORE-TUBE SUSPENDED VIBRATION ABSORPTION SYSTEM[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(12): 49-53. doi: 10.13204/j.gyjz200812014
    [20]Zong Lan, Sui Chengquan. EXPERIMENTAL STUDY ON SEISMIC PERFORMANCE OF FRICTION DAMPING SHEAR WALLS[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(12): 42-44,47. doi: 10.13204/j.gyjz200412011
  • Cited by

    Periodical cited type(1)

    1. 王界贤,姚利宏,刘睿静. CLT结构建筑体系与建筑技术研究进展. 林产工业. 2022(09): 60-63+68 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-0302468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.8 %FULLTEXT: 8.8 %META: 90.4 %META: 90.4 %PDF: 0.8 %PDF: 0.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.8 %其他: 8.8 %China: 0.8 %China: 0.8 %上海: 0.8 %上海: 0.8 %东莞: 0.8 %东莞: 0.8 %北京: 4.8 %北京: 4.8 %南京: 0.8 %南京: 0.8 %南通: 0.8 %南通: 0.8 %圣彼得堡: 0.8 %圣彼得堡: 0.8 %太原: 0.8 %太原: 0.8 %宿州: 0.8 %宿州: 0.8 %常州: 0.8 %常州: 0.8 %张家口: 4.8 %张家口: 4.8 %成都: 0.8 %成都: 0.8 %扬州: 0.8 %扬州: 0.8 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.8 %朝阳: 0.8 %杭州: 3.2 %杭州: 3.2 %温州: 1.6 %温州: 1.6 %石家庄: 0.8 %石家庄: 0.8 %芒廷维尤: 36.8 %芒廷维尤: 36.8 %芝加哥: 1.6 %芝加哥: 1.6 %西宁: 12.0 %西宁: 12.0 %贵阳: 4.0 %贵阳: 4.0 %运城: 8.0 %运城: 8.0 %邯郸: 0.8 %邯郸: 0.8 %重庆: 1.6 %重庆: 1.6 %长沙: 0.8 %长沙: 0.8 %其他China上海东莞北京南京南通圣彼得堡太原宿州常州张家口成都扬州晋城朝阳杭州温州石家庄芒廷维尤芝加哥西宁贵阳运城邯郸重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (230) PDF downloads(11) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return