Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Huang Yasheng, Chen Xiaobao, Ma Hongwang, Yang Jianjun, LüMengying. THE MINIMUM DEPTH OF THE GIRDER OF PRESTRESSED CONCRETE FRAME DUE TO REQUIREMENT OF PRESTRESS DEGREE FOR ASEISMIC DESIGN[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(6): 14-16. doi: 10.13204/j.gyjz200506004
Citation: LIU Chengqing, LIAO Wenxiang, FANG Dengjia, DENG Youyi. LATERAL DISPLACEMENT RESISTANCE AND ELASTIC-PLASTIC ANALYSIS OF DIAGRID CORE-TUBE STRUCTURE IN HIGH-RISE BUILDINGS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 57-64. doi: 10.13204/j.gyjzG20010811

LATERAL DISPLACEMENT RESISTANCE AND ELASTIC-PLASTIC ANALYSIS OF DIAGRID CORE-TUBE STRUCTURE IN HIGH-RISE BUILDINGS

doi: 10.13204/j.gyjzG20010811
  • Received Date: 2020-01-08
    Available Online: 2021-03-31
  • In order to study the seismic behavior of diagrid core-tube structure in high-rise buildings under frequent and rare earthquakes, according to the Guangzhou West Tower project, the diagrid core-tube structure was established in accordance with the Code for Seismic Design of Buildings(GB 50011-2010). Based on the principle of equal material consumption, the traditional frame-shear wall structure with the same consumption of materials as the diagrid core-tube structure was established. On this basis, the distribution laws of lateral stiffness, shear lag, internal and external tube shear force and overturning moment of the structure, the development and failure extent of plastic hinge, the collapse mechanism and the ductility of the structure were compared and analyzed. The results showed that the diagrid core-tube structure had stronger spatial overall collaborative stress performance compared with the traditional frame shear-wall structure, and the effect of the outer tube of the inclined column on the overall stiffness was obvious, and the growth of the harmful inter-story drift ratio was far less than that of the diagrid core-tube structure. Diagrid core-tube structure had higher importance of outer tube inclined column, less plastic hinge development, less energy consumption capacity and poor ductility. Therefore, the design of strength and stability of the inclined columns of outer tube was the key to ensure that the entire structure will not collapse under the rare earthquake.
  • 容柏生. 国内高层建筑结构设计的若干新进展[J]. 建筑结构, 2007, 37(9):1-5.
    方登甲, 杜永峰, 刘成清, 等. 复杂多层隔震结构近场地震动位移响应特征分析[J]. 西南交通大学学报, 2020, 55(1):158-166

    , 192.
    TOMEI V, IMBIMBO M, MELE E. Optimization of Structural Patterns for Tall Buildings:The Case of Diagrid[J]. Engineering Structures, 2018, 171:280-297.
    LIU C Q, MA K Q. Calculation Model of the Lateral Stiffness of High-Rise Diagrid Tube Structures Based on the Modular Method[J]. The Structural Design of Tall and Special Buildings, 2017, 26(4):1-12.DOI: 10.1002/tal.1333.
    MONTUORI G M, MELE E, BRANDONISIO G, et al. Design Criteria for Diagrid Tall Buildings:Stiffness Versus Strength[J]. The Structural Design of Tall and Special Buildings, 2014, 23(17):1294-1314.
    LACIDOGNA G, SCARAMOZZINO D, CARPINTERI A. A Matrix-Based Method for the Structural Analysis of Diagrid System[J]. Engineering Structures, 2019, 193:340-352.
    SEYEDEHAIDA M, MATIN A, FARZAD B, et al. Mutual Effect of Geometric Modifications and Diagrid Structure on Structural Optimization of Tall Buildings[J]. Architectural Science Review, 2018, 61(6):371-383.
    刘成清, 罗馨怡, 马开强. 竖向荷载作用下高层建筑斜交网格筒结构外鼓侧移研究[J]. 钢结构, 2017, 32(11):79-84.
    KIM Y J, JUNG I Y, JU Y K, et al. Cyclic Behavior of Diagrid Nodes with H-Section Braces[J].Journal of Structural Engineering, 2010, 136(9):1111-1122.
    LIU C Q, LUO X Y, FANG D J, et al. Study on Flexural Stiffness of Diagrid Non-Stiffened Node Based on Four-Spring Assemblage Model[J]. Engineering Structures, 2019, 198:1-9. DOI: 10.1016/j.engstruct.2019.109500.
    LEE J, KONG J, KIM J. Seismic Performance Evaluation of Steel Diagrid Buildings[J]. International Journal of Steel Structures, 2018, 18(3):1035-1047.
    KIM J, KONG J. Progressive Collapse Behavior of Rotor-Type Diagrid Buildings[J]. Structural Design of Tall and Special Buildings, 2013, 22(16):1199-1214.
    KWON K, KIM J. Progressive Collapse and Seismic Performance of Twisted Diagrid Buildings[J]. International Journal of High-Rise Buildings, 2014, 3(3):223-230.
    刘成清, 周庆林. 斜交网格不同结构形式的侧移规律研究[J]. 钢结构, 2017, 32(5):11-14.
    方小丹, 韦宏, 江毅, 等. 广州西塔结构抗震设计[J]. 建筑结构学报, 2010, 31(1):47-55.
    张崇厚, 孟杰, 赵丰. 曲线网格高层斜交网筒结构体系抗侧性能[J]. 清华大学学报(自然科学版), 2011, 51(12):1894-1900.
    汪大绥, 贺军利, 张凤新. 静力弹塑性分析(Pushover Analysis)的基本原理和计算实例[J]. 世界地震工程, 2004(1):45-53.
    缪志伟, 马千里, 叶列平, 等. Pushover方法的准确性和适用性研究[J]. 工程抗震与加固改造, 2008, 30(1):55-59.
    王峰, 史庆轩, 王朋,等. 高层斜交网格筒结构受力层间位移的计算及其应用[J]. 建筑结构学报, 2019, 40(8):181-190.
    郭伟亮, 滕军, 容柏生, 等. 高层斜交网格筒-核心筒结构抗震性能分析[J]. 振动与冲击, 2011, 30(4):150-155.
  • Relative Articles

    [1]HAN Xue, LI Haifeng, XIE Caixia. RESEARCH ON MECHANICAL PROPERTIES OF STEEL PLATES WITH ROUND HOLES UNDER REPEATED TENSILE AND COMPRESSIVE LOADS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(6): 128-134. doi: 10.13204/j.gyjz202006021
    [4]Pang Naiyong, Jia Yingjie, Xia Lei. ANALYSIS OF FACTORS INFLUENCING PERFORMANCE OF FRAME-SUPPORTED MULTI-RIBBED WALL BEAM UNDER VERTICAL LOAD[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(2): 54-57. doi: 10.13204/j.gyjz201202012
    [5]Yao Qianfeng, Shi Yongheng. DAMAGE-REDUCTION SEISMIC DESIGN OF MULTI-RIBBED SLAB STRUCTUR[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(1): 1-3,13. doi: 10.13204/j.gyjz200801001
    [6]Yao Qianfeng, Zhang Jiancai, Huang Wei, Wei Xiao, Ma Jing, Yin Qixiang. ANALYSIS OF INTERNAL FORCE CALCULATION OF FRAME-SUPPORTED MULTI-RIBBED SLAB STRUCTURE WALL BEAMUNDER VERTICAL LOAD[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(1): 19-23. doi: 10.13204/j.gyjz200801005
    [7]Peng Fei, Cheng Wenrang, Fu Yuliang, Wang Jie. THE STUDY OF THE OPENING SIZE OF SHORT PIER SHEAR WALLS AND THE DEFINITION OF SHORT PIER SHEAR WALL STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(3): 41-43. doi: 10.13204/j.gyjz200603011
    [8]Yang Fulei, Xi Zhenyong, Sun Hai. A DESIGN SCHEME OF STRENGTHENING LONG-SPAN RC BEAM WITH DEMOLISHING COLUMN[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(4): 21-23. doi: 10.13204/j.gyjz200504006
    [9]Meng Da, Hang Ying, Zhou Yunlin. FINITE ELEMENT ANALYSIS OF NO-HOLE CONTINUOUS WALL-BEAMS SUBJECTED TO VERTICAL LOADING[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(12): 48-50. doi: 10.13204/j.gyjz200412013
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.4 %FULLTEXT: 26.4 %META: 73.6 %META: 73.6 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.5 %其他: 12.5 %北京: 9.7 %北京: 9.7 %密蘇里城: 4.2 %密蘇里城: 4.2 %张家口: 2.8 %张家口: 2.8 %耶拿: 4.2 %耶拿: 4.2 %芒廷维尤: 62.5 %芒廷维尤: 62.5 %西宁: 2.8 %西宁: 2.8 %重庆: 1.4 %重庆: 1.4 %其他北京密蘇里城张家口耶拿芒廷维尤西宁重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (87) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return