NIU Ditao, CHEN Lei, LIU Xiguang. A CALCULATION METHOD OF FLEXURAL CAPACITY OF REINFORCED CONCRETE BEAMS CORRODED BY SULFURIC ACID[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 50-54,68. doi: 10.13204/j.gyjzG19113014
Citation:
NIU Ditao, CHEN Lei, LIU Xiguang. A CALCULATION METHOD OF FLEXURAL CAPACITY OF REINFORCED CONCRETE BEAMS CORRODED BY SULFURIC ACID[J]. INDUSTRIAL CONSTRUCTION , 2020, 50(12): 50-54,68. doi: 10.13204/j.gyjzG19113014
NIU Ditao, CHEN Lei, LIU Xiguang. A CALCULATION METHOD OF FLEXURAL CAPACITY OF REINFORCED CONCRETE BEAMS CORRODED BY SULFURIC ACID[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 50-54,68. doi: 10.13204/j.gyjzG19113014
Citation:
NIU Ditao, CHEN Lei, LIU Xiguang. A CALCULATION METHOD OF FLEXURAL CAPACITY OF REINFORCED CONCRETE BEAMS CORRODED BY SULFURIC ACID[J]. INDUSTRIAL CONSTRUCTION , 2020, 50(12): 50-54,68. doi: 10.13204/j.gyjzG19113014
A CALCULATION METHOD OF FLEXURAL CAPACITY OF REINFORCED CONCRETE BEAMS CORRODED BY SULFURIC ACID
1. State Key Laboratory of Green Building in Western China, Xi'an University of Architecture & Technology, Xi'an 710055;
2. College of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an 710055
Received Date: 2020-04-22
Available Online:
2021-03-31
Abstract
In order to reasonably evaluate the residual bending capacity of existing corroded reinforced concrete beams and establish a reasonable and scientific calculation model for the flexural capacity of corroded reinforced concrete beams, considering the degradation of mechanical properties and section damage of sulfuric acid corrosion concrete, the degradation of mechanical properties of corrosion reinforcement and the influence of reinforcement strength utilization coefficient, a calculation method of flexural bearing capacity of reinforced concrete beams after sulfuric acid corrosion was proposed. Calcalated results were in good agreement with experimental ones. The results showed that with the decrease of pH value, the influence of sulfuric acid corrosion on the flexural capacity of beams increased; the higher the strength grade of concrete, the faster the bearing capacity of beams decreased; when the reinforcement was not corroded, the bearing capacity of beams decreased with the increase of the thickness of concrete corrosion layer.
References
牛荻涛, 林明强, 李月晨. 复杂化工环境混凝土腐蚀破坏机理分析[C]//全国混凝土结构基本理论及工程应用学术会议论文集. 2014.
范颖芳. 受腐蚀钢筋混凝土构件性能研究[D]. 大连:大连理工大学, 2002.
袁迎曙, 余索. 锈蚀钢筋混凝土梁的结构性能退化[J]. 建筑结构学报, 1997, 18(4):51-57.
张建仁, 张克波, 彭晖, 等. 锈蚀钢筋混凝土矩形梁正截面抗弯承载力计算方法[J]. 中国公路学报, 2009, 22(3):45-51.
牛荻涛, 卢梅, 王庆霖. 锈蚀钢筋混凝土梁正截面受弯承载力计算方法研究[J]. 建筑结构, 2002(10):14-17.
孙彬. 在役钢筋混凝土结构的性能退化与抗震性能评估[D]. 西安:西安建筑科技大学, 2006.
PAVLÍK V. Corrosion of Hardened Cement Paste by Acetic and Nitric Acids Part Ⅲ:Influence of Water/Cement Ratio[J]. Cement and Concrete Research, 1996, 26(3):475-490.
周飞鹏. 混凝土的酸雨腐蚀模型研究[D]. 大连:大连理工大学, 2006.
李北星, 周长泉, 蔡老虎, 等. 硫酸环境作用下粉煤灰混凝土性能劣化时变规律[J].材料科学与工程学报, 2014, 32(6):809-815.
曹双寅. 受硫酸和硫酸盐腐蚀的混凝土结构非线性分析和耐久性预测[D].上海:同济大学, 1988.
牛荻涛, 卢梅, 王庆霖. 锈蚀钢筋混凝土梁承载力计算方法研究[J]. 建筑结构, 2002(12):18-20.
TEPFERS R. Cracking of Concrete Cover Along Anchored Deformed Reinforcing Bars[J]. Magazine of Concrete Research, 1979, 31(3):35-42.
范颖芳,王大为,栾海洋.模拟酸沉降环境混凝土梁承载性能研究[J]. 工程力学, 2014, 31(4):147-177.
惠云玲,林志伸.混凝土受弯构件腐蚀前后构件性能试验研究报告[R]. 北京:冶金工业部建筑研究总院国家工业建筑诊断与改造工程技术研究中心, 1995.
Relative Articles
[1] ZHANG Xue, MEN Jinjie, RONG Qiang, QIAO Dehao. Research on Prediction Models of Flexural Capacity of Corroded RC Beams Based on Ensemble Learning [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 128-137. doi: 10.3724/j.gyjzG24012901
[2] LIU Zhaowei, GUO Xingxing, HAN Yanqing, LIU Qianqian, WU Ning, LIU Chaofeng. Prediction of Residual Flexural Capacity of Reinforced Concrete Beams After Fire [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 221-225. doi: 10.13204/gyjzG22120508
[3] XU Qiyan, LIU Quanlin, BI Pingjun. Bending Capacity Calculation of Steel Reinfoned Concrete Composite Beams Considering Axial Force [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 120-125. doi: 10.13204/j.gyjzG21030807
[4] YANG Zhinian, Qi Jianquan, DUAN Kaida, YAN Jianji, SUN Xingwei, WANG Xingguo. EXPERIMENT STUDY ON SHEAR PROPERTIES OF RC BEAMS UNDER HIGH TEMPERATURE [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 57-62. doi: 10.13204/j.gyjz201908060008
[5] Xu Yehui, Li Bin, Xun Yong. EXPERIMENTAL RESEARCH ON SECONDARY BENDING BEHAVIOR OF REINFORCED CONCRETE BEAMS STRENGTHENED WITH TEXTILE REINFORCED CONCRETE SHEETS [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(1): 173-178. doi: 10.13204/j.gyjz201501035
[6] Wang Yutian, Zhang Wei, Jiang Fuxiang. EXPERIMENT ON THE BENDING PERFORMANCE OF CFRP REINFORCED PRE-DAMAGED REINFORCED CONCRETE BEAM UNDER SEAWATER ENVIRONMENT [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 99-103. doi: 10.13204/j.gyjz201302020
[7] Jia Bin, Cheng Jin, Meng Naiqing, Liu Shunfeng. FLEXURAL BEHAVIOR OF CORRODED REINFORCED CONCRETE BEAMS STRENGTHENED WITH CARBON FIBER COMPOSITE SHEETS [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(5): 144-147. doi: 10.13204/j.gyjz201305030
[8] Wang Zheng, Shi Qingxuan. COMPARATIVE ANANLYSIS OF SHEAR CAPACITY FOR REINFORCED CONCRETE BEAMS [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 105-109,138. doi: 10.13204/j.gyjz201307024
[9] Chu Yunpeng, Yao Yong, Deng Yongjun, Xia Xiaoning, Chen Daiguo. EXPERIMENTAL STUDY ON CONSTRUCTION PROCESS AND BENDING CAPACITY OF DAMAGED RC BEAM STRENGTHENED BY COMPOSITE CFRP SHEETS [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 73-77. doi: 10.13204/j.gyjz201204016
[10] Xiong Xueyu, Fan Xinhai. CALCULATION OF THE FLEXURAL CAPACITY OF R.C BEAMS STRENGTHENED WITH PRESTRESSED CFRP UNDER SUSTAINING LOAD AND ANALYSIS OF THE INFLUENTIAL FACTORS [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(4): 121-125. doi: 10.13204/j.gyjz201004026
[11] Sun Yang, Diao Bo. EXPERIMENTS OF SHEAR BEARING CAPACITY OF RC BEAM UNDER ACTION OF MULTI-AGGRESSIVE ENVIRONMENT AND LOAD COUPLING [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(6): 16-20. doi: 10.13204/j.gyjz201006005
[12] Xiong Xueyu, Xu Haifeng. RESEARCH ON RC BEAMS COMBINATION STRENGTHENED WITH CARBON FIBER REINFORCED POLYMER AND STEEL PLATES UNDER SUSTAINING LOAD [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(4): 131-136. doi: 10.13204/j.gyjz201004028
[13] Yu Qiubo. DISCUSSION ON THE MINIMUM RATIO OF THE REINFORCEMENT IN REINFORCED CONCRETE FLEXURAL MEMBERS WITH HRB500 BAR STEEL [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(1): 90-92. doi: 10.13204/j.gyjz200901019
[14] Ouyang Yu, Zhang Yunchao, Li Xiang. THE RESEARCH ON SHEAR CAPACITY OF RC BEAMS STRENGTHENEDWITH BFRP SHEETS [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(1): 134-137. doi: 10.13204/j.gyjz200901030
[15] Liang Jinfu, Yan Liubin, Zhao Junjun, Liu Qimao. EXPERIMENTAL STUDY OF BENDING PERFORMANCE OF RC BEAMS STRENGTHENED WITH NEAR-SURFACE MOUNTED CFRP PLATE [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(2): 100-102,117. doi: 10.13204/j.gyjz200902017
[16] Sun Bin, Niu Ditao, Wang Yingsheng. STUDY ON EVALUATION METHOD OF FLEXURAL STIFFNESS OF CORRODED R. C. BEAMS [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(2): 68-72. doi: 10.13204/j.gyjz200802019
[17] Ouyang Yu, Wang Peng, Zhang Yunchao. CALCULATION AND ANALYSIS OF FLEXURAL AND SHEAR CAPACITY OF RC BEAMS STRENGTHENED WITH BFRP SHEETS [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(6): 24-27. doi: 10.13204/j.gyjz200706007
[18] Yuan Ni-fei, Yao Jian. STUDY ON THE FLEXURAL CAPACITY OF RC BEAMS STRENGTHENED WITH NEAR SURFACE MOUNTED CFRP PLATES [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(10): 104-106. doi: 10.13204/j.gyjz200610029
[19] An Ming-liang. EXPERIMENTAL STUDIES ON BENDING LOAD CAPACITY OF RC BEAM STRENGTHENED WITH CFRP PLATE [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(10): 43-45. doi: 10.13204/j.gyjz200610013
[20] Xue Ping. COMPUTATIONAL METHOD OF BEARING CAPACITY OF BENDING NORMAL SECTION OF REINFORCED CONCRETE BEAM WITH RECTANGULAR SECTION STRENGTHENED BY CFRP [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(5): 76-77,90. doi: 10.13204/j.gyjz200405024
Cited by Periodical cited type(3) 1. 曾向东,吕松刚,黎国雄,何海霞,潘贝,吕毅刚. 基于长期暴露试验的钢筋混凝土梁抗弯承载力试验与数值模拟. 公路与汽运. 2023(03): 102-110 . 2. 谢小松,苏芳眉,殷黎明. 中东地区光伏钢桩纳硅涂层与热浸镀锌电化学腐蚀试验对比研究. 工业建筑. 2023(S2): 647-650 . 本站查看 3. 冯博雅,夏洪春,朱训国,刘晓洲. 石墨尾矿砂混凝土梁抗弯性能试验研究. 西安理工大学学报. 2022(02): 279-286 .
Other cited types(4)
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 1 2 3 4 5 6
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 9.0 % FULLTEXT : 9.0 % META : 87.1 % META : 87.1 % PDF : 3.9 % PDF : 3.9 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 7.7 % 其他 : 7.7 % Canada : 0.6 % Canada : 0.6 % China : 5.2 % China : 5.2 % 上海 : 1.3 % 上海 : 1.3 % 乌鲁木齐 : 0.6 % 乌鲁木齐 : 0.6 % 兰州 : 0.6 % 兰州 : 0.6 % 北京 : 9.0 % 北京 : 9.0 % 南京 : 0.6 % 南京 : 0.6 % 南宁 : 0.6 % 南宁 : 0.6 % 南阳 : 0.6 % 南阳 : 0.6 % 台州 : 1.3 % 台州 : 1.3 % 咸阳 : 0.6 % 咸阳 : 0.6 % 天津 : 1.3 % 天津 : 1.3 % 常德 : 0.6 % 常德 : 0.6 % 广州 : 0.6 % 广州 : 0.6 % 廊坊 : 2.6 % 廊坊 : 2.6 % 扬州 : 0.6 % 扬州 : 0.6 % 昆明 : 1.3 % 昆明 : 1.3 % 晋城 : 0.6 % 晋城 : 0.6 % 朝阳 : 0.6 % 朝阳 : 0.6 % 杭州 : 1.9 % 杭州 : 1.9 % 桂林 : 3.2 % 桂林 : 3.2 % 武汉 : 0.6 % 武汉 : 0.6 % 沈阳 : 1.3 % 沈阳 : 1.3 % 深圳 : 0.6 % 深圳 : 0.6 % 漯河 : 3.2 % 漯河 : 3.2 % 石家庄 : 0.6 % 石家庄 : 0.6 % 芒廷维尤 : 11.0 % 芒廷维尤 : 11.0 % 西宁 : 24.5 % 西宁 : 24.5 % 西安 : 0.6 % 西安 : 0.6 % 贵阳 : 0.6 % 贵阳 : 0.6 % 运城 : 10.3 % 运城 : 10.3 % 邯郸 : 0.6 % 邯郸 : 0.6 % 郑州 : 1.9 % 郑州 : 1.9 % 重庆 : 0.6 % 重庆 : 0.6 % 阳泉 : 0.6 % 阳泉 : 0.6 % 其他 Canada China 上海 乌鲁木齐 兰州 北京 南京 南宁 南阳 台州 咸阳 天津 常德 广州 廊坊 扬州 昆明 晋城 朝阳 杭州 桂林 武汉 沈阳 深圳 漯河 石家庄 芒廷维尤 西宁 西安 贵阳 运城 邯郸 郑州 重庆 阳泉