Zhan Yungang, Luan Maotian, Yuan Fanfan. NUMERICAL ANALYSIS FOR BEARING CAPACITY BEHAVIOR OF FOOTINGS ON UNDRAINED TWO-LAYERED SATURATED CLAY UNDER VM LOADING[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(1): 71-75,70. doi: 10.13204/j.gyjz200901015
Citation:
CHEN Dachuan, GUO Hongwei. STRESS ANALYSIS OF A HIGH-RISE BUILDING WITH RC SHEAR WALLS REINFORCED BY UNSUPPORTED REPLACEMENT METHOD[J]. INDUSTRIAL CONSTRUCTION , 2020, 50(9): 68-74. doi: 10.13204/j.gyjzG19032703
Zhan Yungang, Luan Maotian, Yuan Fanfan. NUMERICAL ANALYSIS FOR BEARING CAPACITY BEHAVIOR OF FOOTINGS ON UNDRAINED TWO-LAYERED SATURATED CLAY UNDER VM LOADING[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(1): 71-75,70. doi: 10.13204/j.gyjz200901015
Citation:
CHEN Dachuan, GUO Hongwei. STRESS ANALYSIS OF A HIGH-RISE BUILDING WITH RC SHEAR WALLS REINFORCED BY UNSUPPORTED REPLACEMENT METHOD[J]. INDUSTRIAL CONSTRUCTION , 2020, 50(9): 68-74. doi: 10.13204/j.gyjzG19032703
STRESS ANALYSIS OF A HIGH-RISE BUILDING WITH RC SHEAR WALLS REINFORCED BY UNSUPPORTED REPLACEMENT METHOD
Received Date: 2020-02-13
Publish Date:
2020-11-23
Abstract
A high-rise building with shear wall structure has been built to 27 floors above ground, and the actual strength of the shear wall concrete on the ground floor is lower than the design strength. The research used the unsupported shear wall replacement method to strengthen the shear wall. Based on field measured data and ABAQUS simulation, the vertical bearing capacity of the high-rise building shear wall during the unsupported replacement process and the seismic behavior of the shear wall after replacement were analyzed. The measured data and the study of 7 model specimens showed that the shear wall reinforced by segmental replacement method could meet the requirements of the bearing capacity of the shear wall during the construction process; after the reinforcement, there was a stress lag phenomenon in the replacement shear wall and different strength replacement construction of concrete had no significant effect on the stress lag phenomenon; 7 quasi-static simulation tests were performed by using 7 shear lag replacement shear wall model specimens, and the relevant seismic parameters of the one-time pouring shear wall under the original design were compared. With the improvement of the strength of the replacement concrete, the seismic performance of the shear wall reinforced by segmental replacement method was gradually improved, which could meet the original seismic design requirements.
References
中华人民共和国住房和城乡建设部.钻芯法检测混凝土强度技术规范:JGJ/T 384-2016[S].北京:中国建筑工业出版社,2016.
中华人民共和国住房和城乡建设部.混凝土结构加固设计规范:GB 50367-2013[S].北京:中国建筑工业出版社,2013.
中华人民共和国住房和城乡建设部.混凝土结构设计规范:GB 50010-2010[S].北京:中国建筑工业出版社,2010.
中华人民共和国住房和城乡建设部.高层建筑混凝土结构技术规程:JGJ 3-2010[S].北京:中国建筑工业出版社,2010.
王健,姜超.某商住楼剪力墙混凝土置换处理[J].辽宁工程技术大学学报(自然科学版),2016,35(5):504-508.
庄茁.ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005:67-74.
吴元,杨晓婧,王凯,等.灌浆料单轴受压应力-应变曲线试验研究[J].工业建筑,2014,44(增刊1):909-913,903.
VECCHIO F J. Towards Cyclic Load Modeling of Reinforced Concrete[J].ACI Structural Journal,1999,96(2):192-202.
周登峰. 混凝土剪力墙结构免支撑置换加固应力滞后效应分析[D].南京:东南大学,2017.
徐洋洋. 某框架剪力墙置换加固的研究[D].秦皇岛:燕山大学,2016.
郑文杰,舒杰,贺子倬.某旧城改造工程混凝土剪力墙置换处理[J].施工技术,2015,44(4):53-56.
中华人民共和国住房和城乡建设部.建筑抗震设计规范:GB 50011-2010[S].北京:中国建筑工业出版社,2010.
中华人民共和国住房和城乡建设部.建筑抗震试验规范:JGJ/T 101-2015[S].北京:中国建筑工业出版社,2015.
Relative Articles
[1] MA Hailong, MA Yufei, YING Zhijie. Experimental Research on Conversion for Q-s Curves of Self-Anchored Test Piles and Construction of Conversion Formulas [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 142-148. doi: 10.13204/j.gyjzG21082401
[2] ZHOU Peng, MA Hailong. NUMERICAL ANALYSIS ON LOAD TRANSFER OF TENSILE PILES AND BOTTOM-UPLIFTED PILES [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 147-152. doi: 10.13204/j.gyjzG20040901
[4] Chen Lanyun, Shu Zhong, Yi Nangai. NUMERICAL SIMULATION OF VERTICAL BEARING CAPACITY OF POST-GROUTING BORED PILES [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 78-81. doi: 10.13204/j.gyjz201107018
[5] Qiang Xiaojun, Wan Changhong, Jiang Huihuang. ANALYSIS AND COMPARISON OF MODEL TEST REINFORCED EMBANKMENT BY PILE NET WITH PILE CAP [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 75-80. doi: 10.13204/j.gyjz200905016
[6] Dong Jinrong. INFLUENCE OF PILE BOTTOM SLIME ON SKIN FRICTION AND BEARING CAPACITY ESTIMATION TO PILE [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 93-97. doi: 10.13204/j.gyjz200904021
[7] Yi Yaolin, Liu Songyu. NUMERICAL ANALYSIS OF BEHAVIOR OF T-SHAPED CEMENT-SOIL DEEP MIXING PILE COMPOSITE FOUNDATION UNDER EMBANKMENT LOADS [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 63-68. doi: 10.13204/j.gyjz200811016
[8] Shen Baohan. THE CHARACTERISTICS OF LOAD TRANSFER OF DX PILES [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(5): 5-12. doi: 10.13204/j.gyjz200805002
[9] Qi Le, Shi Jian-yong. RESEARCHES ON DISTRIBUTION OF FRICTIONAL RESISTANCE AND EFFECTIVE LENGTH OF FLEXIBLE PILE UNDER RIGID FOUNDATION [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(11): 68-70,84. doi: 10.13204/j.gyjz200711018
[10] Luo Chunbo, Zhu Xiangrong, Kong Qinghua, Sun Jinyue. PILE-SOIL INTERACTION ANALYSIS OF O-CELL TESTING PILE BASED ON ELASTIC THEORY [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 60-63. doi: 10.13204/j.gyjz200708016
[11] Zhang Shimin, Yu Feng. LOAD TRANSFER AND BEARING CAPACITY OF PILES JACKED INTO SANDY DEPOSITS [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 61-64. doi: 10.13204/j.gyjz200705016
[12] Peng Fuming, Yue Qingrui, Hao Jiping, Yang Yongxin. LOAD TRANSFER ANALYSIS OF STEEL STRUCTURES REPAIRED WITH FRP [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 26-30,109. doi: 10.13204/j.gyjz200508006
[13] Pei Jie, Shui Weihou, Cao Hui. NEW MODEL OF LONG PILE LOAD TRANSFER FOR SOFT FOUNDATION IN SHANGHAI [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(7): 50-54,49. doi: 10.13204/j.gyjz200507015
[14] Li Haiwang, Ju Yuwen, Zhao Mingwei, Liang Renwang. ANALYSIS AND FIELD STATIC LOADING TESTS OF CAST-IN-PLACE PILES WITH BRANCHES AND PLATES [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 21-23. doi: 10.13204/j.gyjz200403006
[15] Wu Xiongzhi, An Xinzheng, Wu Ruizhi. STUDY ON BEARING MECHANISM OF SOIL-CEMENT PILE [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 42-43,41. doi: 10.13204/j.gyjz200406014
[16] Chun Lun, Wang Haiyan, Shen Baohan, He Dexin, Sun Junping. FULL-SCALE TEST STUDY ON UNIT SHAFT RESISTANCE AND UNIT END RESISTANCE OF DX PILES CAST-IN-SITU [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 15-18,39. doi: 10.13204/j.gyjz200403004
[17] Chen Lun, Wang Haiyan, Shen Baohan, He Dexin, Sun Junping. FULL-SCALE TEST STUDY ON BEARING MECHANISM AND LOAD TRANSMISSION MODE OF DX PILES CAST-IN-SITU [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 5-8. doi: 10.13204/j.gyjz200403002
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 2025-05 2025-06 2025-07 2025-08 0 2 4 6 8
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 15.4 % FULLTEXT : 15.4 % META : 81.7 % META : 81.7 % PDF : 2.9 % PDF : 2.9 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 25.1 % 其他 : 25.1 % China : 5.1 % China : 5.1 % 上海 : 0.6 % 上海 : 0.6 % 临汾 : 0.6 % 临汾 : 0.6 % 保定 : 0.6 % 保定 : 0.6 % 信阳 : 1.7 % 信阳 : 1.7 % 北京 : 5.1 % 北京 : 5.1 % 宁波 : 1.1 % 宁波 : 1.1 % 宿州 : 0.6 % 宿州 : 0.6 % 常德 : 1.1 % 常德 : 1.1 % 广州 : 0.6 % 广州 : 0.6 % 张家口 : 1.7 % 张家口 : 1.7 % 扬州 : 0.6 % 扬州 : 0.6 % 无锡 : 0.6 % 无锡 : 0.6 % 昆明 : 0.6 % 昆明 : 0.6 % 晋中 : 1.1 % 晋中 : 1.1 % 晋城 : 0.6 % 晋城 : 0.6 % 朝阳 : 0.6 % 朝阳 : 0.6 % 杭州 : 1.1 % 杭州 : 1.1 % 武汉 : 1.1 % 武汉 : 1.1 % 济南 : 0.6 % 济南 : 0.6 % 温州 : 0.6 % 温州 : 0.6 % 漯河 : 1.1 % 漯河 : 1.1 % 石家庄 : 0.6 % 石家庄 : 0.6 % 福州 : 0.6 % 福州 : 0.6 % 芒廷维尤 : 10.3 % 芒廷维尤 : 10.3 % 芝加哥 : 0.6 % 芝加哥 : 0.6 % 西宁 : 23.4 % 西宁 : 23.4 % 诺沃克 : 0.6 % 诺沃克 : 0.6 % 贵阳 : 0.6 % 贵阳 : 0.6 % 运城 : 5.7 % 运城 : 5.7 % 邯郸 : 0.6 % 邯郸 : 0.6 % 郑州 : 1.7 % 郑州 : 1.7 % 长沙 : 1.1 % 长沙 : 1.1 % 阳泉 : 1.7 % 阳泉 : 1.7 % 其他 China 上海 临汾 保定 信阳 北京 宁波 宿州 常德 广州 张家口 扬州 无锡 昆明 晋中 晋城 朝阳 杭州 武汉 济南 温州 漯河 石家庄 福州 芒廷维尤 芝加哥 西宁 诺沃克 贵阳 运城 邯郸 郑州 长沙 阳泉