Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HUANG Ming, LIU Jun. THE SAFETY MONITORING AND PROGNOSTIC SYSTEM OF SLOPE BASED ON PHM[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 66-70,43. doi: 10.13204/j.gyjz202005011
Citation: HUANG Ming, LIU Jun. THE SAFETY MONITORING AND PROGNOSTIC SYSTEM OF SLOPE BASED ON PHM[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 66-70,43. doi: 10.13204/j.gyjz202005011

THE SAFETY MONITORING AND PROGNOSTIC SYSTEM OF SLOPE BASED ON PHM

doi: 10.13204/j.gyjz202005011
  • Received Date: 2019-11-13
  • Publish Date: 2020-07-14
  • In order to quantitatively recognize the operation state of a slope and predict its risk of instability, based on the theory of Prognostic and Health Management (PHM), the framework of slope PHM system was studied considering the monitoring situation. Based on the performance degradation fault forecast method, the Failure Rate (FR) and Residual Safety Degree (RSD) were defined based on the actual displacement of slope. According to the characteristics of slope sliding, combining Saito Michitakanori method and neural networks, the slope slip time and the critical displacement were predicted from the monitoring displacements. The FR and RSD formulas were established, and the performance degradation time curve was drawn to realize the quantitative identification and forecast FR and RSD. They could be used to provide direct guidance for appropriate governance and maintenance. According to the monitoring information of a slope, the FR forecast process of displacement for slope PHM system was explained in detail. Its analytical model and forecasted results were in good agreement with the slope actual situation.
  • 朱继良,黄润秋,张诗媛,等.某大型水电站高位边坡开挖的变形响应研究[J].岩土工程学报,2010,32(5):784-791.
    黄铭. 数学模型与工程安全监测[M]. 上海:上海交通大学出版社,2008.
    杨强,潘元伟,程立,等. 蓄水期边坡及地基变形对高拱坝的影响[J]. 岩土力学与工程学报,2015,34(增刊2):375-382.
    黄铭,刘俊.降雨影响下高边坡渗压神经网络监测模型[J].上海交通大学学报, 2013,47(10):1548-1551.
    黄铭,刘俊,葛修润. 边坡开挖期实测位移的分解与合成预测[J].岩石力学与工程学报, 2003,22(8):1320-1323.
    JOUIN M, GOURIVEAU R, HISSEL D. Prognostics and Health Management of PEMFC:State of the Art and Remaining Challenges[J].International Journal of Hydrogen Energy, 2013, 38(35):15307-17317.
    蓝祝光,黄铭. 基于实测信息的海堤PHM系统框架及关键技术研究[J].水土保持通报, 2017, 37(3):307-313.
    蓝祝光,黄铭.海堤故障预测和健康管理系统的多目标维修决策优化模型[J].工业建筑,2019,49(1):123-129.
    莫固良,汪慧云,李兴旺,等. 飞机健康监测与预测系统的发展及展望[J].振动测试与诊断,2013, 33(6):925-930

    ,1089.
    KHAN H, AL-GAYEM Q, RICHARDSON A M. A Housekeeping Prognostic Health Management Framework for Microfluidic Systems[J]. IEEE Transactions on Device and Materials Reliability,2017,17(2):438-449.
    ALEXANDRU P, JAKUB G P, BAGETTI J M, et al. Prognostics and Health Monitoring of Electronic System:A Review[C]//18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2017. Dresden, Germany:Institute of Electrical and Electronics Engineers Inc, 2017:1-11
    MEHDI B, KAMAL M, MOHAMMED L, et al. Critical Components Selection for a Prognostics and Health Management System Design:An Application to an Overhead Contact System[C]//2016 Annual Conference of the Prognostics and Health Management Society, PHM 2016. Denver Co., United States:Prognostics and Health Management Society, 2016:93-100.
    黄赞武. 轨道电路故障预测与健康管理关键技术研究[D].北京:北京交通大学, 2013.
    LAN Z G, HUANG M. Health Assessment Model and Maintenance Decision Model for Seawall PHM System[J]. Arabian Journal for Science and Engineering, 2019,44(10):8377-8387.
    曾声奎.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报,2005,26(5):627-632.
    金赛赛,黄考利,连光耀,等. 面向PHM的复杂装备系统故障预测技术研究[J].信息技术, 2013(12):200-202.
    冯添乐,江永丰. 基于支持向量回归机的可靠度预测模型[J],计算机与数字工程,2011,39(2):29-32.
    中华人民共和国住房和城乡建设部.建筑基坑工程监测技术规范:GB 50497-2009[S].北京:中国建筑工业出版社,2009.
    中华人民共和国水利部.水利水电工程边坡设计规范:SL 386-2007[S].北京:中国水利水电出版社, 2007.
    中华人民共和国国土资源部.崩塌、滑坡、泥石流监测规范:DZ/T 0221-2006[S]. 北京:中国标准出版社,2006.
    贺可强,陈为公,张朋. 蠕滑型边坡动态稳定性系数实时监测及其位移预警判据研究[J]. 岩石力学与工程学报,2016,35(7):1377-1385.
    陆迎寿,黄铭,蓝祝光.人工神经网络在海堤非稳定渗流参数反演中的应用[J].南水北调与水利科技, 2015,13(6):1147-1150.
  • Relative Articles

    [1]LIN Bin, ZHAO Yongjia, LI Huaixin, TIAN Zhuhua, WANG Peng. Stress Transfer Models of Soil Arching and Their Differences of Patterns[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(1): 182-188. doi: 10.13204/j.gyjzG21092318
    [2]ZHANG Tan, LIN Songtao, ZHENG Hong, CHEN Yanjiang. A Global Method for Stability Analysis of Anchored Slopes[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 157-161. doi: 10.13204/j.gyjzG22051111
    [3]LIU Zhaowei, GUO Xingxing, HAN Yanqing, LIU Qianqian, WU Ning, LIU Chaofeng. Prediction of Residual Flexural Capacity of Reinforced Concrete Beams After Fire[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 221-225. doi: 10.13204/gyjzG22120508
    [4]LAN Tao, DING Min, DI Shaohan, ZHENG Feihong, ZHUANG Jinzhao. Prediction of Ultimate Bearing Capacity of Single-Layer Spherical Reticulated Shell Based on TensorFlow[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 70-73. doi: 10.13204/j.gyjzG20060112
    [5]LIN Sen, XUE Huajun, ZHANG Yuanjian. DEFORMATION CONTROL OF PILE FOUNDATIONS FOR A LONG-SPAN CABLE-STAYED BRIDGE UNDER CONSTRUCTION OF A LIGHT RAIL STATION WITH THE PILE-BEAM-ARCH METHOD[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(2): 206-210,198. doi: 10.13204/j.gyjzG20092701
    [6]DIAO Yu, JIN Zhuangzhuang, HUANG Sheng, YANG Chao, ZHU Pengyu, BI Cheng, MA Aoyang. RESEARCH ON MECHANICS OF OBLIQUE-VERTICAL ALTERNATE PILES IN SLOPES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 91-96. doi: 10.13204/j.gyjzG20031006
    [7]WU Xianguo, YANG Sai, CHEN Hongyu, GAO Fei, HUANG Hanyang. PREDICTION OF EARLY CRACK RESISTANCE OF CONCRETE BY SUPPORT VECTOR MACHINE BASED ON RANDOM FOREST[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 99-105,167. doi: 10.13204/j.gyjzG20050903
    [9]Zheng Shansuo, Wang Fan, Wei Li, He Wei. STUDY OF DISPLACEMENT DUCTILITY FACTOR OF STEEL REINFORCED HIGH STRENGTH CONCRETE FRAME COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 137-141. doi: 10.13204/j.gyjz2001412023
    [10]Yin Jiang, Hu Qigao, Li Peng. THE INFLUENCE OF VERTICAL EFFECT OF NEAR-FAULT EARTHQUAKE ON DISPLACEMENT DEMAND OF STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 60-66. doi: 10.13204/j.gyjz201306014
    [11]Lu Kunlin, Zhu Dayong. THE STATE OF THE ART IN THE LIMIT EQUILIBRIUM METHOD BY MODIFYING NORMAL STRESSES OVER SLIP SURFACE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(6): 131-136,45. doi: 10.13204/j.gyjz201206028
    [12]Xiong Xueyu, Yang Jingping. COMPARISON AND ANALYSIS OF CABLE AND ROD IN THE LONG-SPAN SPACE STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(3): 138-142,101. doi: 10.13204/j.gyjz201203029
    [13]Nie lin, Yang Tao, Zhou Depei, Liu Yongjiang. ESTIMATE OF SLOPE DYNAMICAL STABILITY BASED ON EARTHQUAKE RESPONSE ANALYSIS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(11): 82-86. doi: 10.13204/j.gyjz201211018
    [14]Lu Kunlin, Zhu Dayong, Yang Yang. RESEARCH ON EARTH PRESSURE CONSIDERING DISPLACEMENT AND SOIL ARCHING[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(5): 88-92. doi: 10.13204/j.gyjz201105020
    [15]Yue Qiang, Xiao Hongtian, Li Bo. BOUNDARY ELEMENT ANALYSIS OF STRESS AND DISPLACEMENT FIELD IN LAYERED SOIL[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(12): 52-55. doi: 10.13204/j.gyjz200612015
    [16]Jiang Li, Chen Lun. ANALYTICAL SOLUTION FOR THE LOAD-DISPLACEMENT RELATIONSHIP OF PULLOUT DX PILE BASED ON ELASTIC THEORY[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 65-70. doi: 10.13204/j.gyjz200605018
    [17]Zhang Li-hua, Cai Mei-feng, Niu Qing-lian. WEIBULL MODEL FOR PREDICTING THE DEFORMATION OF THE COMPLETE PROCESS OF SETTLEMENT OF COMPOSITE FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(10): 54-56. doi: 10.13204/j.gyjz200610015
    [18]Liu Qijian, Yang Linde. ANALYSIS OF VERTICAL BEARING CAPACITY AND DISPLACEMENT BY THE SETTLEMENT OF PILE TOP[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(3): 35-37. doi: 10.13204/j.gyjz200503014
    [19]Liu Yongjian, Zhang Boyou. PREDICTION METHOD OF VERTICAL ULTIMATE BEARING CAPACITY OF PILE BASED ON CHAOS OPTIMAL METHOD AND NEURAL NETWORKS[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(3): 38-41. doi: 10.13204/j.gyjz200503015
    [20]Cheng Caixia, Zhao Junhai, Wei Xueying. SOLUTION OF ULTIMATE LOAD FOR SLOPE BY UNIFIED SLIP LINE FIELD METHOD AND FINITE ELEMENT METHOD[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(10): 33-35,46. doi: 10.13204/j.gyjz200510011
  • Cited by

    Periodical cited type(7)

    1. 黄铭,于威海. 基于安全监测的引水工程边坡健康度分析及剩余寿命预测. 工业建筑. 2024(11): 61-66 . 本站查看
    2. 肖自为,马源,李金林,龚弦,邓修林,程曦. 基于过程预警模型的矿山边坡监测系统研究与应用. 地质灾害与环境保护. 2024(04): 91-98 .
    3. 叶虹娣,黄铭. 基于二元维纳过程的在役边坡剩余寿命预测. 安徽建筑. 2023(04): 107-109 .
    4. 赵宝,李佳怡,李烨斌,王亚军,向超群,成庶. 重载列车PHM关键技术研究综述. 电工技术. 2023(14): 235-240 .
    5. 翁恒. 水利水电工程边坡形变风险预测方法. 水利技术监督. 2022(05): 109-112+178+199 .
    6. 侯太平,杨前冬,卢雪峰,蒋磊,伍安杰,黄秀银. 基于IVDF-SVR耦合模型的边坡变形预测. 人民珠江. 2022(05): 68-74 .
    7. 冯少杰,邓王倩,孙世国. 基于模糊层次法的渣土场边坡韧性评价方法探析. 北京工业职业技术学院学报. 2022(03): 43-48 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-022024-032024-042024-052024-062024-072024-082024-092024-102024-112024-122025-01010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 5.5 %FULLTEXT: 5.5 %META: 90.5 %META: 90.5 %PDF: 4.0 %PDF: 4.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.0 %其他: 5.0 %China: 0.5 %China: 0.5 %上海: 3.0 %上海: 3.0 %东莞: 6.5 %东莞: 6.5 %包头: 0.5 %包头: 0.5 %北京: 11.6 %北京: 11.6 %南京: 1.0 %南京: 1.0 %南宁: 3.5 %南宁: 3.5 %南昌: 0.5 %南昌: 0.5 %合肥: 0.5 %合肥: 0.5 %唐山: 0.5 %唐山: 0.5 %大连: 0.5 %大连: 0.5 %天津: 1.0 %天津: 1.0 %太原: 0.5 %太原: 0.5 %安康: 0.5 %安康: 0.5 %宣城: 0.5 %宣城: 0.5 %宿州: 0.5 %宿州: 0.5 %常州: 0.5 %常州: 0.5 %常德: 0.5 %常德: 0.5 %广州: 7.0 %广州: 7.0 %徐州: 0.5 %徐州: 0.5 %意法半: 0.5 %意法半: 0.5 %成都: 1.0 %成都: 1.0 %扬州: 0.5 %扬州: 0.5 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.5 %朝阳: 0.5 %杭州: 2.5 %杭州: 2.5 %武汉: 1.5 %武汉: 1.5 %沈阳: 1.0 %沈阳: 1.0 %济南: 0.5 %济南: 0.5 %湘潭: 0.5 %湘潭: 0.5 %漯河: 4.0 %漯河: 4.0 %濮阳: 0.5 %濮阳: 0.5 %石家庄: 1.0 %石家庄: 1.0 %福州: 1.5 %福州: 1.5 %秦皇岛: 0.5 %秦皇岛: 0.5 %绍兴: 0.5 %绍兴: 0.5 %芒廷维尤: 11.6 %芒廷维尤: 11.6 %芝加哥: 1.0 %芝加哥: 1.0 %苏州: 1.0 %苏州: 1.0 %衡水: 0.5 %衡水: 0.5 %西宁: 9.5 %西宁: 9.5 %西安: 0.5 %西安: 0.5 %贵阳: 1.5 %贵阳: 1.5 %运城: 5.0 %运城: 5.0 %邯郸: 0.5 %邯郸: 0.5 %重庆: 3.0 %重庆: 3.0 %钦州: 0.5 %钦州: 0.5 %长沙: 1.5 %长沙: 1.5 %阜新: 1.0 %阜新: 1.0 %青岛: 0.5 %青岛: 0.5 %其他China上海东莞包头北京南京南宁南昌合肥唐山大连天津太原安康宣城宿州常州常德广州徐州意法半成都扬州晋城朝阳杭州武汉沈阳济南湘潭漯河濮阳石家庄福州秦皇岛绍兴芒廷维尤芝加哥苏州衡水西宁西安贵阳运城邯郸重庆钦州长沙阜新青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (180) PDF downloads(8) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return