Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHOU Ying, CAI Youqing, ZHU Zhihui. EXPERIMENTAL STUDY OF DYNAMIC CHARACTERISTICS OF SAND WITH FINE GRAINS UNDER WAVE LOAD[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 58-65,30. doi: 10.13204/j.gyjz202005010
Citation: ZHOU Ying, CAI Youqing, ZHU Zhihui. EXPERIMENTAL STUDY OF DYNAMIC CHARACTERISTICS OF SAND WITH FINE GRAINS UNDER WAVE LOAD[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 58-65,30. doi: 10.13204/j.gyjz202005010

EXPERIMENTAL STUDY OF DYNAMIC CHARACTERISTICS OF SAND WITH FINE GRAINS UNDER WAVE LOAD

doi: 10.13204/j.gyjz202005010
  • Received Date: 2019-10-21
  • Publish Date: 2020-07-14
  • The dynamic characteristics of saturated sand with fine grains were studied by hollow cylinder apparatus torsional shear test. The test results showed that the liquefaction cycles for sands under wave load by hollow cylinder torsional shear test were obviously smaller than that one by dynamic triaxial or dynamic torsional shear test; with the increase of fine grained content, the liquefaction cycles for sand with fine grained content first decreased and then increased, when the content of fine grains was about at 10%, the cycles were lowest; when the fine grained content was smaller, the development rule of excess pore water pressure of sand with fine graines was similar to that of pure sand, when the fine grained content reached more than 15%, the rule of clay gradually appeared. The results showed that the content of fine grains and the effective confining pressure had no effect on the modulus normalization curve; the damping ratio normalization curve of sand mixed with fine particles was obviously affected by the confining pressure, and the larger the initial effective confining pressure, the smaller the damping ratio.
  • MOHAMMAD L N, PUPPALA A J, ALAVILLI P. Effect of Strain Measurements on Resilient Modulus of Sands[C]//Procoedings of the Dynamic Geotechnique Testing Ⅱ. Philadelphia, USA:ASTM, 1994.
    中华人民共和国住房和城乡建设部.海堤工程设计规范:GB/T 50154-2014[S].北京:中国计划出版社,2014.
    张福海,陈庆,张晓阳,等.海砂-海泥混合料作为海堤填料的可行性试验研究[J].岩土工程学报,2017,39(增刊1):182-186.
    刘莹,王清,肖树芳.不同地区吹填土基本性质对比研究[J].岩土工程技术, 2003(4):197-200.
    陈义军,胡士兵.浅析吹填施工技术在造地工程中的应用[J].广东水利水电, 2015(2):48-51.
    衡朝阳,何满潮,裘以惠.含黏粒砂土抗液化性能的试验研究[J].工程地质学报, 2001,9(4):339-344.
    陈国兴,胡庆兴,刘雪珠.关于砂土液化判别的若干意见[C]//全国土动力学学术会议论文集.2002:141-151.
    LEE K L. Cyclic Stress Conditions Causing Liquefaction of Sand.[J]. ASCE, Journal of Soil Mechanics and Foundtion, 1967, 93(1):47-70.
    LEE K L, FITTON J. Factors Affecting the Cyclic Loading Strength of Soil[C]//Proceedings of the Vibration Effects of Earthquakes on Soils & Foundations. 1969:71-95.
    PERLEA V G,KOESTER J P,PRAKASH K S.How Liquefiable are Cohesive Soils[C]//Proceedings of the second International Conference on Earthquake Geotechnical Engineering. 1999:611-618.
    GHAHREMANI M, GHALANDARZADEH A. Effect of Plastic Fines on Cyclic Resistance of Sands[C]//Geoshanghai International Conference. 2006:406-412.
    刘雪珠,陈国兴.黏粒含量对南京粉细砂液化影响的试验研究[J].地震工程与工程振动,2003,23(3):150-155.
    潘剑锋,刘喜康,王力,等.粗细粒混合土液化特性研究综述[J].四川水利,2010(6):41-43.
    褚峰,邵生俊,陈存礼.饱和淤泥质砂土动力变形及动强度特性试验研究[J].岩石力学与工程学报,2014,33(增刊1):3299-3305.
    ISHIHARA K,TOWHATA I.Sand Response to Cyclic Rotation of Principal Stress Directions as Induced by Wave Loads[J].Soils and Foundations, 1983, 23(4):11-26.
    张建民,谢定义.饱和砂土振动孔隙水压力增长的实用算法[J].水利学报,1991(8):45-51.
    沈扬,陶明安,王鑫,等.交通荷载引发主应力轴旋转下软黏土变形与强度特性试验研究[J].岩土力学,2016,37(6):1569-1578.
    王炳辉,陈国兴.循环荷载下饱和南京细砂的孔压增量模型[J].岩土工程学报,2011,33(2):188-194.
    刘功勋,栾茂田.双向耦合循环剪切条件下超固结饱和海洋黏土孔压与强度特性研究[J].岩土力学,2011,32(增刊2):215-221.
    曹洋. 波浪作用下原状软黏土动力特性与微观结构关系试验研究[D].杭州:浙江大学,2013.
    雷华阳,娄金峰,许英刚,等.天津黏土地基动载模式下的孔压发展规律[J].中国港湾建设,2018,38(2):24-29.
    魏新江,张涛,丁智,等.地铁荷载下不同固结度软黏土的孔压试验模型[J].岩土力学,2014,35(10):2761-2768

    ,2874.
    邓海峰,刘振纹,祁磊,等.波浪作用下饱和砂土孔压发展规律试验研究[J].水利与建筑工程学报,2017,15(3):45-48

    ,59.
    潘坤,杨仲轩.不规则动荷载作用下砂土孔压特性试验研究[J].岩土工程学报,2017,39(增刊1):79-84.
    HARDIN B O, DRNEVICH V P. Shear Modulus and Damping in Soils:Design Equations and Curves[J]. ASCE, Journal of Soil Mechanics & Foundations, 1972, 98(7):667-692.
    孙静.岩土动剪切模量阻尼试验及应用研究[D].北京:中国地震局工程力学研究所, 2004.
  • Relative Articles

    [1]XING Guolei, LI Shouying, WU Yingqiang, LIU Min, WANG Yongfeng. Research on Wind-Induced Responses of a Solar Tower in CSP Station Based on Aeroelastic Model Test[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 148-152,160. doi: 10.13204/j.gyjzG21101208
    [2]NIU Ben, CHEN Weiyun, LIU Zhijun, WANG Dan. Numerical Analysis on Influence of Sinking Processes of Immersed Tube Tunnels on Stability of Seabed Foundation Trench Slopes[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 31-36. doi: 10.13204/j.gyjzG22102905
    [3]LIANG Chaofeng, FU Yangyan, ZHAO Jiangxia, GAO Yueqing, WANG Chunhui. Damping Properties of Rubber Modified Recycled Aggregate Concrete Subjected to Different Damage Degrees[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 194-200,146. doi: 10.13204/j.gyjzG21111009
    [4]LI Xiaomin. TEST RESEARCH ON DYNAMIC PROPERTIES OF SATURATED SAND REINFORCED WITH GEOCELLS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(2): 130-134. doi: 10.13204/j.gyjzG19121006
    [5]Zhang Shuai Cheng Xiaohui, . NUMERICAL SIMULATION AND EXPERIMENTAL RESEARCH ON STABILIZATION OF LIQUEFIABLE SAND FOUNDATION BY MICP[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 23-27. doi: 10.13204/j.gyjz201507005
    [6]Wang Qiyun, Zhang Jiasheng, Wang Jia. LARGE-SCALE TRIAXIAL TEST STUDY ON SUBGRADE FILLER OF GROUP B-COARSE GRAINED SOIL OF HIGH SPEED RAILWAY[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(10): 86-90. doi: 10.13204/j.gyjz201410018
    [7]Xie Pan, Huang Xiaoxu. STRUCTURAL DESIGN OF ADDING STOREY RETROFIT OF HIGH-RISE STEEL GARAGE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 144-149,9. doi: 10.13204/j.gyjz201308030
    [8]Zhang Pei, Zhu Han, Zhao Ke, Huang Bin. DYNAMIC CHARACTERISTICS OF THE CLAY CORE MATERIAL FOR EARTH AND ROCKFILL DAMS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 68-71. doi: 10.13204/j.gyjz201307016
    [9]Yang Fang. EXPERIMENTAL STUDY ON SMALL-STRAIN DYNAMIC PROPERTIES OF CEMENTED SOIL[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 102-105. doi: 10.13204/j.gyjz201304021
    [10]Chen Zhongqing, Xu Chao, Ye Guanbao, Lu Sheng, Li Junshi. FIELD EVALUATION OF DYNAMIC COMPACTION ON SILT FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 106-110. doi: 10.13204/j.gyjz201304022
    [11]Bu Zhan-yu, Ding Yong, Xie Xu, Huang Jian-yuan. INVESTIGATION OF DAMPING MATRICES ACCURATE ESTIMATION OF CABLE-STAYED BRIDGES BASED ON NON-PROPORTIONAL DAMPING[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(10): 67-71,149. doi: 10.13204/j.gyjz201210016
    [12]Sun Jinkun, Cheng Min, He Xin, Guo Xiaokang. VISCOUS DAMPING SEISMIC DESIGN OF FRAME-SHEAR WALL STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(5): 66-70. doi: 10.13204/j.gyjz201105016
    [13]Cai Huiteng, Qin Juan, Xu Li, Fang Jiaye. TESTING STUDY ON DYNAMIC SHEAR MODULUS AND DAMPING RATIO OF TYPICAL SOILS IN QUANZHOU AREA[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(5): 104-107,98. doi: 10.13204/j.gyjz201105023
    [14]Shao Guoxin, Tu Yongqing. TEST STUDY ON THE DAMPING PROPERTIES OF POLYMER FILLED STEEL TUBES[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(3): 124-127. doi: 10.13204/j.gyjz201003027
    [15]Zhang Yanmei, Zhang Xudong, Zhang Hongru. NUMERICAL SIMULATION OF ANTI2LIQUEFACTION CHARACTERISTIC OF STONE COLUMNS COMPOSITE FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(2): 59-63. doi: 10.13204/j.gyjz200802017
    [16]Zhang Yu, Wang Ruheng, Jia Bin. STUDY ON DAMPING RATIO OF SANDY PEBBLE SOIL SUBJECTED TO DYNAMIC LOADING[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(4): 59-62. doi: 10.13204/j.gyjz200804016
    [17]Wu Huaizhong, Wang Ruheng, Guo Wen, Chu Wenrong. STUDY ON THE DYNAMIC STRENGTH AND MODULUS OF SANDY PEBBLE SOIL[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(9): 50-52.
    [18]Chen Zhenfu, Shi Jianjun, Ke Guojun, Guo Changqing, Sun Delun, Chen Junjie, Hu Shaoquan. STUDY ON DAMP OF POLYPROPYLENE FIBRE CONCRETE IN SMALL DEFORMATION[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 59-60,30. doi: 10.13204/j.gyjz200406019
    [19]Chen Lin, Zhou Yun, Zhang Yaochun. INFLUENCE OF INPUTTING DIMENSIONS OF EARTHQUAKE WAVES AND DAMPING RATIO ON SEISMIC RESPONSE TIME-HISTORY ANALYSIS OF MEGA STEEL FRAMES[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(5): 67-69. doi: 10.13204/j.gyjz200405021
    [20]Wu Yi, Lin Jianhua. ANALYSIS OF EFFECT OF LARGE GROUND DISPLACEMENT BY SEISMIC LIQUEFACTION ON UNDERGROUND PIPLING BASED ON RELIABILITY THEORY[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 52-54. doi: 10.13204/j.gyjz200406017
  • Cited by

    Periodical cited type(7)

    1. 李安龙,耿天成,徐兴雨,郭席君,王盼盼,徐继尚. 基于莱州湾浅层海床土工特性的方形人工鱼礁场址适宜性研究. 中国海洋大学学报(自然科学版). 2023(03): 52-62 .
    2. 王家全,祝梦柯,林志南,唐滢. 海砂力学特性的黏粒效应和围压效应试验分析. 工业建筑. 2023(02): 157-162 . 本站查看
    3. 王家全,祝梦柯,林志南,梁宁. 细粒含量对饱和砾性土静动力学特性的影响. 土木工程学报. 2023(05): 112-121 .
    4. 王家全,王晴,祝梦柯,畅振超. 三级循环荷载下细粒含量对砾砂动力特性的影响分析. 自然灾害学报. 2023(04): 239-248 .
    5. 王家全,祝梦柯,林志南,王晴. 多级变幅动载下含细粒砾砂动力参数试验分析. 地下空间与工程学报. 2022(06): 1933-1941 .
    6. 王海涛,简琦薇. 基于BP神经网络的散装铁精矿液化风险评估模型. 软件导刊. 2021(10): 93-97 .
    7. 陈晓飞,吴建翔,李园. 应力路径对饱和砂土动力特性影响的试验研究. 工程技术研究. 2021(12): 6-8 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.9 %FULLTEXT: 18.9 %META: 79.9 %META: 79.9 %PDF: 1.2 %PDF: 1.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.3 %其他: 4.3 %上海: 1.2 %上海: 1.2 %北京: 14.6 %北京: 14.6 %十堰: 0.6 %十堰: 0.6 %南昌: 0.6 %南昌: 0.6 %天津: 1.8 %天津: 1.8 %太原: 0.6 %太原: 0.6 %宿州: 0.6 %宿州: 0.6 %常德: 0.6 %常德: 0.6 %张家口: 13.4 %张家口: 13.4 %徐州: 0.6 %徐州: 0.6 %扬州: 1.2 %扬州: 1.2 %无锡: 1.2 %无锡: 1.2 %昆明: 0.6 %昆明: 0.6 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.6 %朝阳: 0.6 %杭州: 9.8 %杭州: 9.8 %沈阳: 0.6 %沈阳: 0.6 %济南: 1.2 %济南: 1.2 %湖州: 1.8 %湖州: 1.8 %漯河: 1.2 %漯河: 1.2 %烟台: 1.2 %烟台: 1.2 %百色: 0.6 %百色: 0.6 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.6 %福州: 0.6 %秦皇岛: 0.6 %秦皇岛: 0.6 %芒廷维尤: 14.0 %芒廷维尤: 14.0 %芝加哥: 1.8 %芝加哥: 1.8 %西宁: 7.9 %西宁: 7.9 %西安: 0.6 %西安: 0.6 %贵阳: 1.2 %贵阳: 1.2 %运城: 6.1 %运城: 6.1 %邯郸: 0.6 %邯郸: 0.6 %郑州: 0.6 %郑州: 0.6 %重庆: 0.6 %重庆: 0.6 %镇江: 2.4 %镇江: 2.4 %长沙: 2.4 %长沙: 2.4 %其他上海北京十堰南昌天津太原宿州常德张家口徐州扬州无锡昆明晋城朝阳杭州沈阳济南湖州漯河烟台百色石家庄福州秦皇岛芒廷维尤芝加哥西宁西安贵阳运城邯郸郑州重庆镇江长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (130) PDF downloads(2) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return