Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Zhu Chenfei, Liu Xiaojun, Li Wenzhe, Wu Yonggen, Liu Qingtao. STUDY OF FREEZE-THAW DURABILITY AND DAMAGE MODEL OFHYBRID FIBER CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 10-14. doi: 10.13204/j.gyjz201502003
Citation: TAO Yu, LIANG Weiqiao, FANG Wujun. RESEARCH ON THE STABILITY OF UNDERCROSSED SUBWAY SHIELD TUNNEL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 66-70. doi: 10.13204/j.gyjz202004012

RESEARCH ON THE STABILITY OF UNDERCROSSED SUBWAY SHIELD TUNNEL

doi: 10.13204/j.gyjz202004012
  • Received Date: 2019-10-11
  • Based on the Guangzhou subway undercrossing structure, the structural deformation of the existing vehicular tunnel and the soil deformation were comprehensively analyzed, and an appropriate plan about the newly-built tunnel was proposed. The main contents of research are as follows:choosing the Guangzhou's 21th huangcun station-world grand station undercrossing the existing vehicular tunnel project used as a research object, a 3D finite element numerical model was established, and discrete element software was used for numerical calculation. The tunneling schemes for the new tunnel with different excavation stagger distance on the left and right lines were proposed, and its effect on the deformation of the tunnel undercrossing the existing vehicular tunnel was studied, so as to obtain an appropriate stagger distance range.
  • CHANG S B, MOON S J A Case Study on Instrumentations of a Large Tunnel Crossing Under the Existing Subway Structure[C]//Proceedings of the KGS 2000 Spring Conference. 2000:56-59.
    SHARMA J S, HEFNY A M, ZHAO J, et al. Effect of Large Excavation on Deformation of Adjacent Mrt Tunnels[J]. Tunnelling and Underground Space Technology, 2001, 16(1):93-98.
    BRENNER B, NEFF T. Design and Management for Underground Uncertainty on the Central Artery/Tunnel Project[C]//North American Tunnelling. 2000:13-21.
    PECK R B. Deep Excavations and Tunnelling in Soft Ground[C]//Proc.7th Int. Conf. SMFE. Mexcio, 1969:225-290.
    王剑晨,张顶立,张成平,等.北京地区浅埋暗挖法下穿施工既有隧道变形特点及预测[J].岩石力学与工程学报,2014,33(5):947-956.
    张迪,周庆九,卓旭阳,等.大型盾构隧道穿越铁路框架桥的影响分析[J].现代隧道技术,2013,50(6):131-138.
    刘大雷.新建隧道上穿对既有隧道纵向位移的计算方法[J].安徽建筑, 2018, 24(6):245-250.
    刘军,南志领,金鑫,等.地铁工程穿越施工中热力管线变形及控制研究[J].施工技术,2017,46(增刊2):1053-1057.
    黄明利,瞿晓巍,谭忠盛,等.地铁重庆北站零距离立体交叉暗挖施工力学效应分析[J].土木工程学报,2017,50(增刊2):21-27.
    许有俊,葛绍英,孙超.隧道斜交下穿施工引起既有线的沉降变形分析[J].建筑技术,2017,48(11):1163-1166.
    苏宗贤,何川.盾构隧道纵向变形附加内力的壳-弹簧-接触模型数值分析[J].现代隧道技术,2015,52(6):70-76.
    王智高.城市地铁超近距离叠交区段盾构隧道施工技术[J].工程技术研究,2018(16):31-32.
    来弘鹏,郑海伟,何秋敏,等.砂土地层盾构隧道小角度斜下穿既有隧道施工参数优化研究[J].中国公路学报,2018,31(10):130-140.
    武永珍,王亚会,陆瑶.新建隧道上跨施工对既有隧道的影响及加固措施研究[J].施工技术,2017,46(增刊2):18-25.
    洪文霞,钱瑾玉,贾明磊.邻近建筑物条件下青岛地铁盾构施工风险评价[J].隧道建设(中英文),2018,38(增刊2):68-74.
    白海洋,王正仲.隧道下穿施工对既有线路影响研究[J].山东交通科技,2018(6):28-30.
    王凯旋,王雨,康荣学,等.新建管线近距离上跨地铁车站的安全控制分析[J].中国安全科学学报,2018,28(12):89-95.
    高永,孙俊.南京地铁盾构隧道纵横断面结构安全评估研究[J].都市快轨交通,2015,28(6):60-64

    ,70.
    罗有权,张黎红.隧道开挖对周边既有桩基变形影响研究[J].建筑技术, 2017,48(11):1175-1178.
    李术才,朱维申,陈卫忠,等. 弹塑性大位移有限元方法在软岩隧道变形预估系统研究中的应用[J]. 岩石力学与工程学报,2002(4):466-470.
    刘天宇. 超前小导管在隧道工程中的应用及数值模拟[J]. 土工基础, 2013(2):67-70.
  • Relative Articles

    [1]WANG Yindong, LU Jianguo, WAN Xunsheng, TAN Lilin, DENG Fei, ZHOU Xiaoxun. Study on Characteristics of Hydro-Thermal Transfer and Freezing-Thawing of Soil-Rock Mixtures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 174-181. doi: 10.3724/j.gyjzG22082708
    [2]HOU Chongchi, WANG Kaixuan, ZHENG Wenzhong, LIU Yuchen, ZHANG Lijia, LI Hongbin. Seismic Performance and Cumulative Damage Analysis of Concrete Columns Confined by High-Strength Stirrups[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 133-142. doi: 10.13204/j.gyjzG22111310
    [3]XIONG Huatao. An Improved Hyperbolic Model for Silty Clay Considering Strain Softening of Soil and Freeze-Thaw Cycle Effects[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 114-121. doi: 10.13204/j.gyjzG21050610
    [4]LONG Yifei, PAN Chan, GUO Xiaoqin, LI Yangwei. Experimental Research on Dynamic Mechanical Properties of Rubber Concrete Subjected to Freeze-Thaw Cycles[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 163-170,139. doi: 10.13204/j.gyjzG21091202
    [5]WANG Yan, XU Shanhua, LI Anbang. Research on Restoring Force Model of Freeze-Thaw Damaged Reinforced Concrete Columns[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 97-102. doi: 10.13204/j.gyjzG21101322
    [6]WANG Bin, FENG Boqiang, SUN Yongfeng, YANG Qian, WANG Jiabin. A TIME-VARYING STRESS-STRAIN MODEL OF STIRRUPS CONFINED CONCRETE CONSIDERING THE EFFECT OF PITTING CORROSION[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 106-112,155. doi: 10.13204/j.gyjzG20092906
    [7]HUANG Min, DUAN Jingmin, ZHANG Jiaxiang, MAO Qingchao, YUAN Jianghao, SUN Longtang. FRACTURE DAMAGE AND SOFTENING CONSTITUTIVE RALATION OF BFRC SUBJECTED TO FREEZE-THAW CYCLES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(8): 199-205,178. doi: 10.13204/j.gyjzG21010507
    [8]CUI Honghuan, HE Jingyun, ZHANG Zhenhuan, YANG Xingran, WANG Xiaojing. A FREEZE-THAW DAMAGE MODEL OF CEMENT-SOLIDIFIED SOIL IN SEASONAL FROZEN SOIL ZONES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 158-163. doi: 10.13204/j.gyjzG20072406
    [9]XU Lina, NIU Lei, ZHANG Ying, WANG Jun. EFFECT OF FREEZE-THAW CYCLING ON THE MECHANICAL PROPERTIES OF FIBER-REINFORCED CEMENTED SOIL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 109-113. doi: 10.13204/j.gyjz202003018
    [10]LIU Yuxia, LU Jingzhou, TIAN Feixiang, LI Yunkai, LI Haibo. RESEARCH ON THE DAMAGE OF GEOPOLYMER CONCRETE UNDER THE ACTION OF SALTWATER AND FREEZE-THAW[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 76-81. doi: 10.13204/j.gyjz202004014
    [11]Li Yan, LüHenglin, Yin Huiguang, Zhang Lianying, Li Bing, Liu Ruixue. TEST RESEARCH ON THE FREEZING-THAWING RESISTANCE PERFORMANCE OF HIGH-STRENGTH CONCRETE WITH SINGLE ADMIXTURE AND DOUBLE ADMIXTURES[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 1-4. doi: 10.13204/j.gyjz201502001
    [12]Zheng Shansuo, Zhao Peng. CONSTITUTIVE RELATIONSHIP MODEL FOR MASONRY IN COMPRESSION UNDER ACTION OF FREEZE-THAW CYCLE[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 15-18. doi: 10.13204/j.gyjz201502004
    [13]Qu Feng, Niu Ditao, Yang Yuxi. EXPERIMENTAL STUDY OF PERFORMANCE OF FLY ASH FIBER CONCRETE UNDER THE ACTION OF SALT FROST[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 77-80. doi: 10.13204/j.gyjz201406018
    [14]Wang Xinling, Kang Xiandong, Li Ke, Huang Weidong. FATIGUE DAMAGE MECHANISM OF HRBF500 RC BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 45-48. doi: 10.13204/j.gyjz201311011
    [15]Chen Shudong, Sun Wei, Yu Hongfa, Zhang Yunsheng. STUDY ON CARBONATION OF FLY ASH CONCRETE WITH FREEZE-THAW CYCLE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(1): 133-136. doi: 10.13204/j.gyjz201201025
    [16]Lian Yeda, Wang Xianjie, Zhang Xun'an, Limazie Toi. RESEARCH ADVANCES OF STRUCTURAL SEISMIC CUMULATIVE DAMAGE INDEX[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 118-122,142. doi: 10.13204/j.gyjz201204025
    [17]Ji Xiaodong, Zhao Ning, Song Yupu. EXPERIMENTAL STUDY ON BOND BEHAVIOR'S DETERIORATION BETWEEN DEFORMED STEEL BAR AND CONCRETE AFTER FREEZING AND THAWING[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(1): 87-91. doi: 10.13204/j.gyjz201001022
    [18]Liu Ronggui, Fu Kai, Yan Tingcheng. THE FATIGUE PROPERTIES OF PRE-STRESSED CONCRETE STRUCTURE UNDER THE CONDITIONS OF FREEZE-THAW CYCLE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 75-78. doi: 10.13204/j.gyjz200811018
    [19]Jin Zuquan, Sun Wei, Zhang Yunsheng, Lai Jianzhong. STUDY ON DAMAGE OF HPC UNDER THE CORROSION OF CHLORIDE AND SULFATE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(1): 5-7. doi: 10.13204/j.gyjz200501001
    [20]Wang Jianmin, Li Hui, Chen Longzhu. APPLICATION OF RELATIVE DISPLACEMENT CHANGE IN STOREYS OF FRAMES(RDCSF) IN STRUCTURAL DAMAGE DETECTION[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(11): 47-49,46. doi: 10.13204/j.gyjz200511014
  • Cited by

    Periodical cited type(33)

    1. 王晨霞,周阳升,王高峰,刘涛,王晓云,曹芙波. 冻融环境下钢渣细骨料混凝土微观结构及损伤演化模型. 应用力学学报. 2024(03): 585-593 .
    2. 孙传武,王学志,辛明,贺晶晶. 玄武岩-纤维素混杂纤维混凝土抗冻性能研究. 混凝土与水泥制品. 2024(07): 65-69 .
    3. 胡松,屈锋,程火焰,陈峰,石卫华,王功勋,金浩. 受冻融作用钢筋混凝土电化学除氯模型研究. 自然灾害学报. 2024(05): 218-225 .
    4. 罗映双,于峰. 纤维混凝土研究综述. 佳木斯大学学报(自然科学版). 2024(10): 122-124 .
    5. 刘骏霓,路建国,高佳佳,晏忠瑞,万旭升,张嘉成. 水工混凝土冰冻害机理及抗冻性能研究进展. 长江科学院院报. 2023(03): 158-165 .
    6. 刘春盛,吕树辰. 混杂纤维混凝土抗冻性能研究现状. 建材世界. 2023(02): 6-8 .
    7. 刘昱,周静海,吴迪,康天蓓,于杭琳. 冻融循环下废弃纤维再生混凝土与钢筋的黏结性能. 建筑材料学报. 2023(09): 1031-1038 .
    8. 谷悦,刘保华,张繁,曹琛,张施龙,廖贤陵. 油菜秸秆纤维混凝土抗冻性能的试验研究. 湖南农业大学学报(自然科学版). 2023(05): 603-608 .
    9. 周大卫,刘娟红,段品佳,程立年,娄百川. 混凝土超低温冻融循环损伤演化规律和机理. 建筑材料学报. 2022(05): 490-497 .
    10. 牛建刚,王梦雨,李京军,郝吉. 冻融后塑钢纤维轻骨料混凝土与钢筋黏结性能试验研究. 应用基础与工程科学学报. 2021(02): 459-470 .
    11. 周涛,熊小斌,李岩. 冻融循环对钢纤维混凝土动力性能的影响研究. 水资源与水工程学报. 2021(03): 167-172+178 .
    12. 王威,罗桂军,唐寄强,罗曜波,何威特,李满意,颜斌. 氯盐-冻融循环下PPFC耐久性能研究. 建筑结构. 2021(S2): 1012-1016 .
    13. 辛明,王学志,佟欢. 纤维混凝土耐久性能研究综述. 辽宁工业大学学报(自然科学版). 2020(01): 35-39 .
    14. 聂红宾,谷拴成,高攀科,张建鹏. 寒区碳纤维增强混凝土抗冻性能试验研究. 混凝土与水泥制品. 2020(05): 46-50 .
    15. 朱红兵,吕洪林,李秀,向杰. 氯盐环境下聚丙烯纤维陶粒混凝土冻融损伤模型试验研究. 新型建筑材料. 2020(07): 46-50 .
    16. 赵瑞刚,傅思静,徐海燕,陶静,张黎. 体积掺量与混杂比对钢-聚丙烯纤维水泥基体性能的影响. 内江师范学院学报. 2020(10): 76-81 .
    17. 程猛,张经双,段雪雷,朱建华. 冻融循环作用下混杂纤维粉煤灰混凝土力学性能试验. 科学技术与工程. 2020(27): 11288-11294 .
    18. 赵小明,李奥阳,乔宏霞,李江川,王新科. 纤维混凝土抗冻性能及损伤劣化模型研究. 硅酸盐通报. 2020(10): 3196-3202 .
    19. 吕圆芳,杨永东. 混杂纤维自密实混凝土冻融性能试验研究. 混凝土与水泥制品. 2020(11): 52-56 .
    20. 宁喜亮,王万平,郝帅,赵子舜,张发山. 不同纤维对混凝土在多重因素作用下抗冻耐久性的影响. 工业建筑. 2020(10): 122-128 . 本站查看
    21. 王志旺,杨鼎宜,王金辉,刘淼,杨俊. 聚丙烯腈纤维混凝土耐久性能试验研究. 混凝土与水泥制品. 2019(11): 49-52 .
    22. 王腾蛟,许金余,彭光,孟博旭. 纳米碳纤维增强混凝土耐久性试验. 功能材料. 2019(11): 11114-11121 .
    23. 李春蕊,王学志,刘华新,胡柯心,李根. 混杂纤维混凝土的研究进展. 材料科学与工程学报. 2018(03): 504-510 .
    24. 牛建刚,谢承斌,郝吉. 冻融下预湿方式对塑钢纤维轻骨料混凝土与钢筋粘结性能的影响. 土木建筑与环境工程. 2018(03): 66-72 .
    25. 牛建刚,左付亮,王佳雷,谢承斌. 塑钢纤维轻骨料混凝土的冻融损伤模型. 建筑材料学报. 2018(02): 235-240 .
    26. 王学志,赵兵兵,朱安标,刘华新. 钢-聚丙烯混杂纤维高强混凝土抗渗性试验研究. 科技通报. 2018(03): 79-83 .
    27. 朱建华. 纤维混凝土的发展. 山西建筑. 2018(32): 120-122 .
    28. 陈升平,王佳雯. 冻融环境下纤维混凝土损伤模型研究. 混凝土. 2017(10): 58-61+67 .
    29. 朱冬梅,霍轶珍,李生勇. 橡胶纤维混凝土抗冻性和孔结构试验分析. 河套学院论坛. 2017(04): 84-88 .
    30. 曹雅娴,贾尚华. 碳-聚丙烯混杂纤维混凝土力学性能试验研究. 公路. 2016(10): 220-224 .
    31. 杨晨晨,白英,田晓宇,张金龙. 掺纤维橡胶混凝土抗冻性能研究. 硅酸盐通报. 2016(10): 3456-3460 .
    32. 任莉莉,朱安标,王学志,刘华新. 纤维掺量及混杂比对钢-聚丙烯混杂纤维高强混凝土力学性能影响研究. 混凝土. 2016(08): 63-66+70 .
    33. 姚文杰,庞建勇,刘洋,王青成. 聚丙烯纤维混凝土耐久性与冻融损伤模型研究. 科学技术与工程. 2016(21): 313-316 .

    Other cited types(30)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030123456
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.2 %FULLTEXT: 22.2 %META: 77.8 %META: 77.8 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.1 %其他: 11.1 %东莞: 1.1 %东莞: 1.1 %中山: 1.1 %中山: 1.1 %乌鲁木齐: 13.3 %乌鲁木齐: 13.3 %九江: 2.2 %九江: 2.2 %六安: 1.1 %六安: 1.1 %北京: 17.8 %北京: 17.8 %台州: 5.6 %台州: 5.6 %呼和浩特: 2.2 %呼和浩特: 2.2 %张家口: 1.1 %张家口: 1.1 %杭州: 1.1 %杭州: 1.1 %漯河: 1.1 %漯河: 1.1 %漳州: 1.1 %漳州: 1.1 %芒廷维尤: 20.0 %芒廷维尤: 20.0 %芝加哥: 6.7 %芝加哥: 6.7 %衡水: 2.2 %衡水: 2.2 %衢州: 1.1 %衢州: 1.1 %西宁: 6.7 %西宁: 6.7 %郑州: 1.1 %郑州: 1.1 %重庆: 1.1 %重庆: 1.1 %金华: 1.1 %金华: 1.1 %其他东莞中山乌鲁木齐九江六安北京台州呼和浩特张家口杭州漯河漳州芒廷维尤芝加哥衡水衢州西宁郑州重庆金华

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (112) PDF downloads(11) Cited by(63)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return