Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XIAO Hao, WEN Shujie, SUN Zili, YAO Wei. EXPERIMENTAL STUDY OF DYNAMIC STRENGTH CHARACTERISTICS FOR RED SANDSTONE WEATHERED SOIL UNDER CYCLIC LOADING[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 49-53. doi: 10.13204/j.gyjz202004009
Citation: XIAO Hao, WEN Shujie, SUN Zili, YAO Wei. EXPERIMENTAL STUDY OF DYNAMIC STRENGTH CHARACTERISTICS FOR RED SANDSTONE WEATHERED SOIL UNDER CYCLIC LOADING[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 49-53. doi: 10.13204/j.gyjz202004009

EXPERIMENTAL STUDY OF DYNAMIC STRENGTH CHARACTERISTICS FOR RED SANDSTONE WEATHERED SOIL UNDER CYCLIC LOADING

doi: 10.13204/j.gyjz202004009
  • Received Date: 2019-07-23
  • In order to study the influence of different confining pressure and consolidation stress ratio on the dynamic strength of red sandstone weathered soil, a series of consolidated undrained triaxial tests were carried out by GDS dynamic triaxial test system under uniaxial loading. The results showed that:the deformation development law of red sandstone weathered soil under cyclic loading was quite different between different consolidation conditions. Under the condition of isotropic consolidation, the increase of confining pressure was helpful to the improvement of dynamic strength.Due to the disintegration and fracturing of red sandstone weathered soil and the shear action of consolidating deviatoric static stress, the dynamic strength of weathered soil under the condition of anisotropic consolidation was less than that under the condition of isotropic consolidation. The effect of different confining pressures on the dynamic stress ratio and vibration frequencies of red sandstone weathered soils were not significant, and the specimens were destroyed within 1 000 cycles. Finally, according to the selected failure criteria, the corresponding dynamic strength curve and dynamic shear strength index were obtained.
  • 潘志新, 彭华. 国内外红层分布及其地貌发育的对比研究[J]. 地理科学, 2015,35(12):1575-1584.
    LIU J, ZHANG H. Water Content Influence on Properties of Red-Layers in Guangzhou Metro Line, China[C]//Advances in Materials Science and Engineering. 2017:1-12. DOI: 10.1155/2017/4808909.
    张剑锋,岳国生,黄春耈.红砂岩修筑浆砌石坝的岩土工程研究[J].上海地质,1989(2):1-6.
    郭永春,谢强,文江泉.红层岩土水理性质工程判别准则试验研究[J].水文地质工程地质,2008(4):71-74.
    朱彦鹏,马滔,杨校辉,等.基于正交设计的红砂岩改良土抗剪强度试验和回归分析[J].岩土工程学报,2018,40(增刊1):87-92.
    喻泽红,魏红卫,邹银生.加筋红砂岩风化土强度和变形特性[J].岩石力学与工程学报,2005(15):2770-2779.
    韦慧,曾胜,赵健,等.路用红砂岩碎石土湿化变形特性试验[J].中南大学学报(自然科学版),2015,46(6):2261-2266.
    彭勃,杨建永,吴建奇,等.红砂岩填土压实厚度对压实能量消耗规律影响试验研究[J].江西理工大学学报,2015,36(3):30-35.
    彭勃,杨建永,温树杰, 等.静力压实不同厚度红砂岩土变形特征试验研究[J].建筑技术,2016,47(5):433-436.

    彭勃,吴建奇,刘凌瀚,等.含水率对红砂岩粗粒土压实变形特征的影响[J].人民长江,2016,47(7):91-96.
    彭勃,刘凌瀚,潘建平,等.粗粒含量对红砂岩土静力压实能耗规律影响[J].四川建筑科学研究,2017,43(1):55-59.
    杨建永,卢凯,甘芳芳.红砂岩土在单点冲击荷载下的作用效应[J].建筑科学,2013,29(3):70-75.
    杨建永,黎寒冰,艾鹏,等.红砂岩土在四点冲击荷载下的冲击试验分析[J].解放军理工大学学报(自然科学版),2015,16(6):543-547.
    杨建永,曾潇,高盼盼,等.红砂岩土在低量级单点冲击荷载下的能量消耗[J].江西理工大学学报,2016,37(1):21-25.
    LEE K L. Cyclic Strength of a Sensitive Clay of Eastern Canada[J]. Canadian Geotechnical Journal, 1979, 16(1):163-176.
    刘保健. 随机荷载下土动力特性测试分析法[M].北京:人民交通出版社,2001.
    阮波,张向京,彭意.Excel规划求解三轴试验抗剪强度指标[J].铁道科学与工程学报, 2009,6(5):57-60.
  • Relative Articles

    [1]ZHUANG Xinshan, KOU Qiang. Research on Dynamic Deformation of Nano-SiO2-Improved Cement-Soil Under Cyclic Loading and Its Microstructure Analysis[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 169-173,218. doi: 10.13204/j.gyjzG21030818
    [2]CHU Yunpeng, LUO Ping, ZHOU Yuan. SHEAR PERFORMANCE EXPERIMENTS OF COLD-FORMED THIN-WALLED STEEL LOAD-BEARING WALLS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(8): 106-113,136. doi: 10.13204/j.gyjzG20101908
    [3]LI Tianbao, XU Jiapei, LIU Kaifu. EFFECT OF RIGID PILES ON BEARING PROPERTIES OF COMPOSITE FOUNDATION WITH GEOGRID-REINFORCED CUSHIONS SUPPORTED WITH PILES SUBJECTED TO CYCLIC LOADS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 137-142. doi: 10.13204/j.gyjzG20112307
    [8]Wang Qiyun, Zhang Jiasheng, Wang Jia. LARGE-SCALE TRIAXIAL TEST STUDY ON SUBGRADE FILLER OF GROUP B-COARSE GRAINED SOIL OF HIGH SPEED RAILWAY[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(10): 86-90. doi: 10.13204/j.gyjz201410018
    [9]Zhang Pei, Zhu Han, Zhao Ke, Huang Bin. DYNAMIC CHARACTERISTICS OF THE CLAY CORE MATERIAL FOR EARTH AND ROCKFILL DAMS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 68-71. doi: 10.13204/j.gyjz201307016
    [10]Zhang Xiangdong, Liu Jiashun, Zhang Zhecheng. EXPERIMENTAL STUDY ON STRUCTURAL PARAMETERS OF FUXIN AEOLIAN SOIL UNDER DYNAMIC LOADS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 83-89. doi: 10.13204/j.gyjz201308018
    [11]Cai Huiteng, Qin Juan, Xu Li, Fang Jiaye. TESTING STUDY ON DYNAMIC SHEAR MODULUS AND DAMPING RATIO OF TYPICAL SOILS IN QUANZHOU AREA[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(5): 104-107,98. doi: 10.13204/j.gyjz201105023
    [12]Luo Sihai, Hu Wei, Pan Xiaoqing, Deng Tongfa, Yang Zeping. COMPARISON OF COMPRESSION BEHAVIOR OF SOIL AFTER PRE-DENSIFICATION BY STATIC OR DYNAMIC LOADS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(10): 68-71. doi: 10.13204/j.gyjz201110017
    [13]Lu Ruihua, Shu Ganping, Ye Tao, Li Haiyun. EXPERIMENTAL STUDY ON POINT-SUPPORTED TEMPERED GLASS PANEL SUBJECTED TO CYCLIC LOAD[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(10): 111-116,90. doi: 10.13204/j.gyjz201010025
    [14]Zhang Yu, Wang Ruheng, Jia Bin. STUDY ON DAMPING RATIO OF SANDY PEBBLE SOIL SUBJECTED TO DYNAMIC LOADING[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(4): 59-62. doi: 10.13204/j.gyjz200804016
    [15]Jia Bin, Wang Ru-heng. DYNAMIC CHARACTERISTICS OF SANDY PEBBLE SOIL[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 71-73,39. doi: 10.13204/j.gyjz200605019
    [16]Wu Huaizhong, Wang Ruheng, Guo Wen, Chu Wenrong. STUDY ON THE DYNAMIC STRENGTH AND MODULUS OF SANDY PEBBLE SOIL[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(9): 50-52.
    [17]Li Qicai, Su Mingzhou, Chen Aiguo, Gu Qiang. EXPERIMENTAL ANALYSIS OF STEEL BEAM-TO-COLUMN CONNECTION WITH CANTILEVER BEAM SPLICING[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 74-76. doi: 10.13204/j.gyjz200406024
  • Cited by

    Periodical cited type(2)

    1. 赵楠. 地铁隧道基底围岩动三轴试验研究. 资源信息与工程. 2022(02): 116-120 .
    2. 张祥,陈骏,李进,温维山,易辉,赵康朴. 基于侧限压缩试验的黏土动态力学性能研究. 矿业安全与环保. 2022(02): 1-8 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06012345
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.0 %FULLTEXT: 10.0 %META: 88.8 %META: 88.8 %PDF: 1.3 %PDF: 1.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.5 %其他: 12.5 %China: 1.2 %China: 1.2 %三明: 2.5 %三明: 2.5 %东莞: 1.2 %东莞: 1.2 %北京: 5.0 %北京: 5.0 %太原: 1.2 %太原: 1.2 %宿州: 1.2 %宿州: 1.2 %岳阳: 1.2 %岳阳: 1.2 %庆阳: 1.2 %庆阳: 1.2 %张家口: 1.2 %张家口: 1.2 %晋城: 1.2 %晋城: 1.2 %朝阳: 1.2 %朝阳: 1.2 %杭州: 1.2 %杭州: 1.2 %枣庄: 1.2 %枣庄: 1.2 %漯河: 2.5 %漯河: 2.5 %石家庄: 1.2 %石家庄: 1.2 %芒廷维尤: 20.0 %芒廷维尤: 20.0 %芝加哥: 2.5 %芝加哥: 2.5 %西宁: 16.2 %西宁: 16.2 %贵阳: 2.5 %贵阳: 2.5 %运城: 13.7 %运城: 13.7 %邯郸: 1.2 %邯郸: 1.2 %重庆: 2.5 %重庆: 2.5 %长沙: 2.5 %长沙: 2.5 %黄石: 1.2 %黄石: 1.2 %其他China三明东莞北京太原宿州岳阳庆阳张家口晋城朝阳杭州枣庄漯河石家庄芒廷维尤芝加哥西宁贵阳运城邯郸重庆长沙黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (70) PDF downloads(1) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return