Qi Yongsheng Gu Qiang Zhao Fenghua, . RESEARCH ON SEISMIC COLLAPSE MARGIN RATIO OF V-SHAPE CBSF CONSIDERING STRUCTURAL INFLUENCING COEFFICIENT[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(6): 145-149. doi: 10.13204/j.gyjz201506028
Citation:
Qi Yongsheng Gu Qiang Zhao Fenghua, . RESEARCH ON SEISMIC COLLAPSE MARGIN RATIO OF V-SHAPE CBSF CONSIDERING STRUCTURAL INFLUENCING COEFFICIENT[J]. INDUSTRIAL CONSTRUCTION , 2015, 45(6): 145-149. doi: 10.13204/j.gyjz201506028
Qi Yongsheng Gu Qiang Zhao Fenghua, . RESEARCH ON SEISMIC COLLAPSE MARGIN RATIO OF V-SHAPE CBSF CONSIDERING STRUCTURAL INFLUENCING COEFFICIENT[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(6): 145-149. doi: 10.13204/j.gyjz201506028
Citation:
Qi Yongsheng Gu Qiang Zhao Fenghua, . RESEARCH ON SEISMIC COLLAPSE MARGIN RATIO OF V-SHAPE CBSF CONSIDERING STRUCTURAL INFLUENCING COEFFICIENT[J]. INDUSTRIAL CONSTRUCTION , 2015, 45(6): 145-149. doi: 10.13204/j.gyjz201506028
RESEARCH ON SEISMIC COLLAPSE MARGIN RATIO OF V-SHAPE CBSF CONSIDERING STRUCTURAL INFLUENCING COEFFICIENT
Abstract
Five typical V-shape concentrically braced steel frames ( CBSF) in zones of seismic intensity VII were designed and their seismic safety was studied according to seismic collapse assessment system of FEMA P695. The results show that the CBSFs based structural influencing coefficientR=3. 2 possess enough anti-collapse capacity, can provide safe room,furthermore,they possess stronger anti-collapse capacity than that ofno callapse in strong earthquake,so that their collapse probability can be accepted under specially strong earthquakes,which can be used in seismic performance-based design.
References
Relative Articles
[1] ZHANG Ailin, YANG Shuo, JIANG Ziqin, ZHANG Wenying, LIU Jie, YANG Xiaofeng. Seismic Fragility Analysis of Steel Frame Structure with Lateral Resistance Energy-Consuming Device [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 101-108. doi: 10.13204/j.gyjzG21122104
[2] LIN Yongjun, XIAO Tianxu, ZHANG Zengpeng, XIE Yuanang. Fuzzy Comprehensive Evaluation Method for Safety of Concrete Frame Structures Based on AHP-Membership Theory [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(10): 28-38,45. doi: 10.13204/j.gyjzG22041612
[3] WANG Bo, XU Qiang, TIAN Qinhu, HAN Xie, WANG Zhihai. ANALYSIS ON COLLAPSE VULNERABILITY OF BRB STEEL FRAMES BASED ON COMPONENT DAMAGE [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 85-90. doi: 10.13204/j.gyjzG20071204
[9] Shu Xingping Mao Jiaxi Yuan Zhishen Lu Beirong, . THE EVALUATION OF CAPACITY TO RESIST PROGRESSIVE COLLAPSE OF PREFABRICATED STEEL FRAME STRUCTURE WITH INCLINED SUPPORT JOINTS [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(10): 13-17. doi: 10.13204/j.gyjz201510003
[10] Wang Lai, Ma Yang, Qiu Jing. PROGRESSIVE COLLAPSE ANALYSIS OF STEEL FRAME STRUCTURE WITH COMPOSITE FLOOR SLAB TWO-WAY TENSION MODEL [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(07): 159-163. doi: 10.13204/j.gyjz2001407033
[11] Tian Penggang, Zhang Fengliang. SAFETY APPRAISAL AND STRUCTURE STRENGTHEN AFTER FIRE FOR SHOPPING CENTER OF ARTS AND CULTURE OF YANCHUAN COUNTY [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(02): 155-160. doi: 10.13204/j.gyjz201402033
[12] Wang Xueyan, Hu Changming, Mei Yuan, Liu Caihong. SECURITY ANALYSIS AND STRENGTHENING OF CONCRETE STRUCTURE WITH THROUGH DEFECT IN FRAME COLUMN [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 150-153,169. doi: 10.13204/j.gyjz201308031
[13] Wei Feng, Xu Weibo. THE DESIGN CONCEPT OF ZHENGZHOU UNIVERSITY CENTER FOR SAFETY EVALUATION OF DRUGS [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(9): 158-161. doi: 10.13204/j.gyjz201309031
[14] Gong Jinxin, Wang Huan. ECONOMIC DEVELOPMENT AND SAFETY OF BUILDING STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 110-114. doi: 10.13204/j.gyjz201307025
[15] Wu Yuntian, Li Yingmin, Liu Liping, Yang Pu. EARTHQUAKE-INDUCED COLLAPSE PREVENTION CAPACITY OF BRICK MASONRY STRUCTURES CONFINED WITH TIE COLUMNS AND TIE BEAMS [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(3): 25-32,171. doi: 10.13204/j.gyjz201203005
[16] Huang Wei, Jiang Xiaoping, Zhang Chenghua, Chen Xin, Zhang Yin, Xu Qin. SEISMIC EVALUATION OF ECOLOGICAL COMPOSITE WALL STRUCTURE BASED ON IDA [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 1-5. doi: 10.13204/j.gyjz201208001
[17] Yu Hang, Zha Xiaoxiong. RESEARCH ON PROGRESSIVE COLLAPSE OF CFST STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(6): 30-35. doi: 10.13204/j.gyjz201106006
[18] Yang Jing, Liu Ling. LIGHT GAUGE WOOD FRAME STRUCTURE IN XIANG’E ELEMENTARY SCHOOL [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 139-141,25. doi: 10.13204/j.gyjz201101031
[19] Shu Hongbo, Zheng Jianjun, Zhang Shaohua. QUALIFICATION AND REINFORCEMENT OF CONCRETE STRUCTURES AFTER FIRE [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(8): 25-27. doi: 10.13204/j.gyjz200908007
[20] Zhang Yuhui, Zhao Zhonghu, Ju Yang. NUMERICAL SIMULATION OF COLLAPSE OF RC FRAME UNDER EARTHQUAKE LOADS [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(3): 57-61,79. doi: 10.13204/j.gyjz200403018
Cited by Periodical cited type(0) Other cited types(3)
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-04 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 0 1 2 3 4 5
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 20.8 % FULLTEXT : 20.8 % META : 79.2 % META : 79.2 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 12.5 % 其他 : 12.5 % 北京 : 14.6 % 北京 : 14.6 % 张家口 : 14.6 % 张家口 : 14.6 % 漯河 : 2.1 % 漯河 : 2.1 % 芒廷维尤 : 33.3 % 芒廷维尤 : 33.3 % 西宁 : 22.9 % 西宁 : 22.9 % 其他 北京 张家口 漯河 芒廷维尤 西宁