Chu Chengfu, Zha Fusheng, Xia Lei, Wang Lianbin. EXPERIMENT STUDY OF ENGINEERING PROPERTIES OF ZINC CONTAMINATED CLAY[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(1): 118-121. doi: 10.13204/j.gyjz201501023
Citation:
Chu Chengfu, Zha Fusheng, Xia Lei, Wang Lianbin. EXPERIMENT STUDY OF ENGINEERING PROPERTIES OF ZINC CONTAMINATED CLAY[J]. INDUSTRIAL CONSTRUCTION , 2015, 45(1): 118-121. doi: 10.13204/j.gyjz201501023
Chu Chengfu, Zha Fusheng, Xia Lei, Wang Lianbin. EXPERIMENT STUDY OF ENGINEERING PROPERTIES OF ZINC CONTAMINATED CLAY[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(1): 118-121. doi: 10.13204/j.gyjz201501023
Citation:
Chu Chengfu, Zha Fusheng, Xia Lei, Wang Lianbin. EXPERIMENT STUDY OF ENGINEERING PROPERTIES OF ZINC CONTAMINATED CLAY[J]. INDUSTRIAL CONSTRUCTION , 2015, 45(1): 118-121. doi: 10.13204/j.gyjz201501023
EXPERIMENT STUDY OF ENGINEERING PROPERTIES OF ZINC CONTAMINATED CLAY
Abstract
With the sustainable development of global economy,the pollution of heavy metal increases greatly in the foundation soil,thus bringing great harm to engineering construction. A series of tests were performed to study engineering properties of artificial zinc contaminated clay. The results showed that relative density of solid particles and plasticity index increased with the increase in zinc concentration,liquid limit and plastic limit decreased with the increase in zinc concentration. As zinc concentration increased,the compression coefficient of zinc polluted soil was increased whereas the compression modulus was decreased. Shear strength of contaminated soil decreased with the increase of zinc concentration. Stress-strain curves showed that it was a strain-hardening characteristics of zinc contaminated soil under unconsolidated undrained triaxial tests,the destruction of zinc contaminated soil showed a plastic damage characteristics.
References
Relative Articles
[1] XIA Lin, MA Xinru, LI Hao, XU Li, JIANG Yongze, CHEN Yan, QI Jinqiu. Influence of Assembly Methods and Densities on Physical and Mechanical Properties of Moso Bamboo-Based Bamboo Scrimber [J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 10-19. doi: 10.3724/j.gyjzG24083104
[2] LI Hao, MA Xinru, XIA Lin, XU Li, JIANG Yongze, CHEN Yan, QI Jinqiu. Research on Physical and Mechanical Properties of Bambusa emeiensis Bamboo Scrimber [J]. INDUSTRIAL CONSTRUCTION, 2025, 55(2): 1-9. doi: 10.3724/j.gyjzG24083101
[3] SHEN Shuiyue, LI Yuanyuan, LI Yunlong, DUAN Shuaipeng. Research on Engineering Characteristics of Modified Silica-Alumina-Based Waste Solidification/Stabilizing of Pb and Cd Contaminated Soil [J]. INDUSTRIAL CONSTRUCTION, 2025, 55(3): 223-230. doi: 10.3724/j.gyjzG23061402
[4] XING Wei, ZHOU Feng, ZHU Rui, CHEN Tingzhu. Study on Microbial Cure and Stabilization Effect and Mechanisms of Zinc-Contaminated Silt [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 32-42. doi: 10.3724/j.gyjzG23031904
[5] BIAN Hanliang, ZHANG Xugang, HAN Yi, LI Beibei, ZHANG Jianwei. Remediation Tests of Zn2+ Contaminated Soil by Soybean Urease [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 67-70,66. doi: 10.13204/j.gyjzG20110216
[7] Zha Fusheng, Hao Ailing, Zhao Lin, Cui Kerui. EXPERIMENTAL STUDY OF EXPANSIVE SOIL TREATED WITH CARBIDE SLAG [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(05): 69-72.
[8] Wang Yong, Cao Liwen, Wen Wenfu, Zhao Xiaomin, Wang Kuifeng. EFFECT OF DOMESTIC SODIUM AND AMMONIUM SALT POLLUTION ON HYDROPHYSICAL AND MECHANICAL PROPERTIES OF COHESIVE SOILS [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(9): 83-87. doi: 10.13204/j.gyjz201309015
[9] Wang Zihan, Zhou Jian, Zhao Zhenping, Zhang Jiao. EXPERIMENTAL STUDY ON STRENGTH AND CRUSHING BEHAVIOR OF COARSE-GRAINED SOIL [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 90-93,14. doi: 10.13204/j.gyjz201308019
[10] Rao Weiguo, Ma Furong, Chen Rigao, Pang Yingbo, Zhang Zhihong, Xiao Zhaoran. EXPERIMENTAL RESEARCH ON THE EFFECT OF THE HEAVY METAL POLLUTANTS ON SOIL COMPACTNESS AND SHEAR STRENGTH [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 92-97. doi: 10.13204/j.gyjz201304019
[11] Yang Jun, Li Xinchun, Zhang Guodong, Tang Yunwei, Xie Zhigang. RESEARCH ON THE INFLUENCE ON EXPANSIVE SOIL CHARACTERISTICS BY DIFFERENT MIXING RATES OF WEATHERED SAND [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(1): 55-60. doi: 10.13204/j.gyjz201301013
[12] Zha Fusheng, Liu Jingjing, Cui Kerui, Xu Long. ENGINEERING PROPERTIES OF SOLIDIFIED AND STABILIZED HEAVY METAL CONTAMINATED SOILS WITH CEMENT [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(11): 74-77,110. doi: 10.13204/j.gyjz201211016
[13] Shi Lin, Zhu Dayong, Chen Longfei. EFFECTS OF PH VALUE ON LIQUID LIMIT AND PLASTIC LIMIT OF SOIL [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(7): 70-73. doi: 10.13204/j.gyjz201107016
[14] Li Jian-jun, Zhao Shu-de, Wang Tie-hang. RESEARCH ON THE PROPERTIES OF THE CEMENT-LOESS [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(7): 25-28,40. doi: 10.13204/j.gyjz200607005
Cited by Periodical cited type(14) 1. 张阳,崔素丽. Cu~(2+)污染原状黄土的物化及结构特性. 西北大学学报(自然科学版). 2024(01): 63-71 . 2. 蒋忠凯,肖桂元,王一鹏. Mn~(2+)污染后膨胀土力学特性的试验研究. 河北工程大学学报(自然科学版). 2024(05): 27-35 . 3. 杨燕. 重金属污染对红黏土的粒度成分及抗剪性能影响研究. 价值工程. 2023(26): 131-133 . 4. 肖桂元,刘闯,刘冲,朱杰茹,张达锦. Pb~(2+)污染对红黏土变形特性影响分析. 信阳师范学院学报(自然科学版). 2022(04): 671-676 . 5. 阙家平,张澄博,黎嘉熙,衡松. NH_4~+对广州南沙原状软土工程性质的影响. 中山大学学报(自然科学版). 2020(03): 97-106 . 6. 吴炎,潘子晴,朱春鹏,丁姝昱,张志军,胡坤. 重金属污染土工程性质研究进展. 河南大学学报(自然科学版). 2020(06): 750-756 . 7. 吴炎,丁姝昱,赵浩楠,潘子晴,张志军,胡坤. 不同浓度ZnCl_2污染粉质黏土强度特性试验. 土木工程与管理学报. 2020(06): 108-112+123 . 8. 陈学军,陈议城,宋宇,李佳明,余思喆,陈李洁. Cu~(2+)污染红黏土土性异变现象分析. 工程地质学报. 2019(05): 1010-1018 . 9. 蔡念,曹丽文,商敬秋. 无机盐溶液渗流过程中化学作用对粉砂渗透性的影响. 科学技术与工程. 2018(16): 312-317 . 10. 梁仕华,罗祺,王蒙,刘勇健,尹应梅,江志源. 石灰与水泥固化南沙锌污染软土试验研究. 广东工业大学学报. 2017(05): 80-85 . 11. 马强,胡兴,邢文文. 不同浓度锌离子污染土的工程力学性能试验研究. 安全与环境工程. 2017(03): 71-76 . 12. 张寓涵,杨晶明,丁鑫,陈鑫. 不同酸碱条件下黏性土的抗剪强度试验研究. 路基工程. 2017(03): 166-169 . 13. 郭慧英,张志红,陶连金. 基于渗透吸力的侵蚀黏土强度模型. 黑龙江科技大学学报. 2016(04): 422-428 . 14. 白龙飞,张璐. 我国近年来污染土工程性质的研究进展. 科技视界. 2015(14): 125+162 .
Other cited types(29)
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 2025-05 2025-06 0 2.5 5 7.5 10 12.5
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 22.7 % FULLTEXT : 22.7 % META : 77.3 % META : 77.3 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 33.3 % 其他 : 33.3 % China : 2.7 % China : 2.7 % 上海 : 4.0 % 上海 : 4.0 % 北京 : 20.0 % 北京 : 20.0 % 台州 : 1.3 % 台州 : 1.3 % 张家口 : 5.3 % 张家口 : 5.3 % 杭州 : 1.3 % 杭州 : 1.3 % 桂林 : 1.3 % 桂林 : 1.3 % 湖州 : 2.7 % 湖州 : 2.7 % 漯河 : 1.3 % 漯河 : 1.3 % 芒廷维尤 : 13.3 % 芒廷维尤 : 13.3 % 西宁 : 8.0 % 西宁 : 8.0 % 鄂州 : 4.0 % 鄂州 : 4.0 % 重庆 : 1.3 % 重庆 : 1.3 % 其他 China 上海 北京 台州 张家口 杭州 桂林 湖州 漯河 芒廷维尤 西宁 鄂州 重庆