Yao Zhaoming, Zhou Yang, Xu Ying, Wang Houliang. GENETIC ALGORITHMS FRACTIONAL ORDER DERIVATIVE BURGERS CREEP MODEL FOR ARTIFICIAL FROZEN SOIL[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 73-76. doi: 10.13204/j.gyjz201311017
Citation:
Yao Zhaoming, Zhou Yang, Xu Ying, Wang Houliang. GENETIC ALGORITHMS FRACTIONAL ORDER DERIVATIVE BURGERS CREEP MODEL FOR ARTIFICIAL FROZEN SOIL[J]. INDUSTRIAL CONSTRUCTION , 2013, 43(11): 73-76. doi: 10.13204/j.gyjz201311017
Yao Zhaoming, Zhou Yang, Xu Ying, Wang Houliang. GENETIC ALGORITHMS FRACTIONAL ORDER DERIVATIVE BURGERS CREEP MODEL FOR ARTIFICIAL FROZEN SOIL[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 73-76. doi: 10.13204/j.gyjz201311017
Citation:
Yao Zhaoming, Zhou Yang, Xu Ying, Wang Houliang. GENETIC ALGORITHMS FRACTIONAL ORDER DERIVATIVE BURGERS CREEP MODEL FOR ARTIFICIAL FROZEN SOIL[J]. INDUSTRIAL CONSTRUCTION , 2013, 43(11): 73-76. doi: 10.13204/j.gyjz201311017
GENETIC ALGORITHMS FRACTIONAL ORDER DERIVATIVE BURGERS CREEP MODEL FOR ARTIFICIAL FROZEN SOIL
1.
1. School of Civil Engineering and Architecture,Anhui University of Science and Technology,Huainan 232001,China;
2.
2. China Coal Construction Group Corporation Ltd,Hefei 230000,China;
3.
3. Atificial Frozen Soil Institute,Anhui University of Science and Technology,Huainan 232001,China
Received Date: 2013-03-15
Publish Date:
2013-11-20
Abstract
It is very important to master the influence of creep characteristics on artificial frozen soil to the engineering safety under construction of freezing method. For the creep,the integer order calculus constitutive relation of artificial frozen soil needs too many components and has other disadvantages,replaced the serial mode of Burgers model with fractional oder derivative function model,fractional order derivative Burgers creep model was constructed to simulate the steady stage of creep. Connected acceleration element in the fractional order derivative Burgers model,the fractional order derivative acceleration Burger creep model to simulate the acceleration stage of creep was constructed. By comparing the result of fractional order derivative Burgers creep model with trial value,the established creep model preferably reflected each stage of creep process of artificial frozen soil. Fractional order derivative Burgers model for artificial frozen soil was a new method for artificial frozen soil creep calculation.
References
[2] Shi Miu Nobuyuki,Zhang Wei. Fractional Calculus Approach toDynamic Problem of Viscoelastic Material[J], JSME, 1999(42):827-830.
康永刚, 张秀娥. 岩石蠕变的非定常分数伯格斯模型[J]. 岩土力学, 2011, 32(11):3237-3241.
[3] Koeller R C. Applications of Fractional Calculus to the Theory ofViscoelasticity[J]. Journal of Applied Mechanics,1984, 51:299-307.
[4] Oldham K B,Spanier J. The Fractional Calculus[M]. NewYork: Academic Press, 1974.
[5] Schiessel H, Metzker R, Blumen A, et al. GeneralizedViscoelastic Models: Their Fractional Equations with Solutions[J]. Journal of Physics A: Mathematical and General,1995,28(23): 6567-6584.
[6] 殷德顺, 任俊娟, 和成亮, 等. 一种新的岩土流变模型元件[J].岩石力学与工程学报, 2007, 26(9):1899-1903.
Relative Articles
[1] ZHU Yangui. Discrete Element Method Analysis on Shear Responses of Mixed Soil During Anisotropic Consolidation [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 167-173. doi: 10.3724/j.gyjzG22062701
[2] LI Hao, WANG Dayang, ZHAO Dongzhuo, XIE Zhen. Shaking Table Tests and Numerical Simulation Study on the Centroid Eccentricity of the Center of Mass of Full-Frame-Supported High-Rise Building Structure with Thick Plate Transfer [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 141-149. doi: 10.3724/j.gyjzG23032007
[3] YANG Chao, ZOU Yongmu, LI Lei, ZHONG Zuliang, LI Yapeng. Research on Mechanisms of Water and Mud Inrush During Tunnelling in Deep and Large Fault Fracture Zones [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(3): 173-179. doi: 10.12304/j.gyjzG22061409
[4] WU Qinghua. Analysis on Construction Responses of Rock Around Parallel Subway Tunnels in Inclined Stratification Rocks [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 29-35,87. doi: 10.13204/j.gyjzG22071706
[5] CAI Qingchi, XIE Hankang. A NUMERICAL METHOD FOR DETERMINING PRE-CONSOLIDATION PRESSURE [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 164-167,187. doi: 10.13204/j.gyjzG20061201
[6] ZHU Caihui, LI Yubo, LAN Kaijiang, HE Haonan. CREEP EFFECT OF LOESS STRATA ON SURROUNDING ROCK PRESSURE OF TUNNELS [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 18-24. doi: 10.13204/j.gyjzG20072901
[7] LI Tao, ZHU Baolong, LUO Bo, WANG Xiong, LI Xin. STUDY ON LOAD-BEARING CHARACTERISTICS OF PILES AND LINING STRUCTURE FOR TUNNELS IN TUNNEL-LANDSLIDE SYSTEMS WITH DIFFERENT SPACEINGS OF ANTI-SLIDE PILES [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 31-38. doi: 10.13204/j.gyjzG20040307
[8] WU Zhaofeng. INTELLIGENT FEEDBACK ANALYSIS OF FLUID-SOLID COUPLING ON ADJOINING ROCK OF TUNNELS IN RICH WATER ZONES BASED ON THE GP-DE METHOD [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(2): 140-145,205. doi: 10.13204/j.gyjzG20031408
[10] Yang Ping. STABILITY ANALYSIS AND REINFORCEMENT TECHNOLOGY RESEARCH OF CHICKEN CLAW TRENCH HIGH ROCKFILL EMBANKMENT IN MOUNTAINOUS AREAS [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 166-173. doi: 10.13204/j.gyjz201505035
[11] Luo Bin. CONSTRUCTION METHOD FOR XIEJIADONG KARST CAVE INSIDE TUNNEL IN GUANGXI [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(03): 129-133. doi: 10.13204/j.gyjz201403027
[12] Zhong Zuliang, Liu Xinrong, Fang Jinbing, Li Xiaoyong, Liao Jingwei. OPTIMIZATION RESEARCH ON TUNNEL CROSSING SCHEME THROUGH ULTRA-SHALLOW AND LARGE-BIAS SECTIONS BASED ON ECONOMIC SAFETY COEFFICIENT RATIO [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 78-82,171. doi: 10.13204/j.gyjz201302016
[13] Deng Tongfa, Luo Sihai, Nie Fusheng. THE QUASI-STATIC METHOD OF THE SEISMIC SOIL PRESSURE CALCULATION BASED ON THE STATIC EARTH PRESSURE ASSUMPTIONS IN THE CODE FOR DESIGN OF TUNNEL [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 83-87. doi: 10.13204/j.gyjz201302017
[14] Wu Zhanrui, Qi Taiyue, Tang Jincai. OPTIMIZATION ANALYSIS OF CONSTRUCTION METHOD FOR SHALLOW-BURIED TUNNEL WITH LARGE SECTION [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(8): 102-107. doi: 10.13204/j.gyjz201208022
[15] Yu Jianying, Wei Gang. THE STATE AND THE ART OF THE IMPACT OF UNDERGROUND TUNNEL CONSTRUCTION ON ADJACENT BUILDINGS [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(9): 116-119. doi: 10.13204/j.gyjz201109026
[16] Zhang Xudong, Liu Xinrong. A STUDY ON THE FEATURE AND FORMATION MECHANISM OF SUPER KARST WATER BURST IN DEEP KARST TUNNEL [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 79-84. doi: 10.13204/j.gyjz201104018
[17] Yu Yanxin, Nie Lei, Shen Shiwei, Ding Huangping. APPLICATION OF TUNNEL SEISMIC PREDICTION SYSTEM TO THE TUNNEL CONSTRUCTION OF YUXIANG EXPRESSWAY [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(5): 100-103. doi: 10.13204/j.gyjz201005021
[18] Yao Yong, Tian Zhi-yu. STUDY ON MECHANICAL BEHAVIOR AND REINFORCING MEASURES OF MIDDLE ROCK WALL OF PARALLEL TUNNEL WITH SMALL INTERVAL [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(4): 57-60,84. doi: 10.13204/j.gyjz200604017
[19] Zhao Dazhou, Wang Qingxiang, Guan Ping. RESEARCH ON LOAD-BEARING CAPACITY OF STEEL TUBULAR COLUMNS FILLED WITH STEEL-REINFORCED HIGH-STRENGTHCONCRETE SUBJECTED TO COMPRESSION AND BENDING [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(9): 84-85,93. doi: 10.13204/j.gyjz200509023
[20] Chen Wanxiang, Yang Liang, Guo Zhikun, Huang Yu, Zhang Shi. STUDY ON TEMPERATURE CONTROL OF MASS CONCRETE IN XUANWU LAKE TUNNEL [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(10): 53-55. doi: 10.13204/j.gyjz200410016
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 1 2 3 4 5
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 5.6 % FULLTEXT : 5.6 % META : 93.1 % META : 93.1 % PDF : 1.4 % PDF : 1.4 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 11.1 % 其他 : 11.1 % 北京 : 5.6 % 北京 : 5.6 % 宿州 : 1.4 % 宿州 : 1.4 % 常德 : 2.8 % 常德 : 2.8 % 广州 : 1.4 % 广州 : 1.4 % 张家口 : 4.2 % 张家口 : 4.2 % 成都 : 1.4 % 成都 : 1.4 % 晋城 : 1.4 % 晋城 : 1.4 % 朝阳 : 1.4 % 朝阳 : 1.4 % 芒廷维尤 : 26.4 % 芒廷维尤 : 26.4 % 西宁 : 18.1 % 西宁 : 18.1 % 贵阳 : 1.4 % 贵阳 : 1.4 % 运城 : 18.1 % 运城 : 18.1 % 邯郸 : 1.4 % 邯郸 : 1.4 % 郑州 : 2.8 % 郑州 : 2.8 % 阳泉 : 1.4 % 阳泉 : 1.4 % 其他 北京 宿州 常德 广州 张家口 成都 晋城 朝阳 芒廷维尤 西宁 贵阳 运城 邯郸 郑州 阳泉