Zhang Yankun, Liu Yanghua, Song Xiaoruan. EXPERIMENTAL STUDY ON FLEXURAL BEARING CAPACITY OF PROFILED STEEL SHEET-LIGHT-WEIGHT AGGREGATE CONCRETE FLOOR SLABS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(8): 83-85. doi: 10.13204/j.gyjz200808021
Citation:
Sun Ying-xia, Zhang Zhi-hao, Wang Jin-an. FAILURE PATTERN STUDY AND STABILITY ANALYSIS OF PILE FOUNDATION IN KARST AREA[J]. INDUSTRIAL CONSTRUCTION , 2012, 42(9): 96-102. doi: 10.13204/j.gyjz201209021
Zhang Yankun, Liu Yanghua, Song Xiaoruan. EXPERIMENTAL STUDY ON FLEXURAL BEARING CAPACITY OF PROFILED STEEL SHEET-LIGHT-WEIGHT AGGREGATE CONCRETE FLOOR SLABS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(8): 83-85. doi: 10.13204/j.gyjz200808021
Citation:
Sun Ying-xia, Zhang Zhi-hao, Wang Jin-an. FAILURE PATTERN STUDY AND STABILITY ANALYSIS OF PILE FOUNDATION IN KARST AREA[J]. INDUSTRIAL CONSTRUCTION , 2012, 42(9): 96-102. doi: 10.13204/j.gyjz201209021
FAILURE PATTERN STUDY AND STABILITY ANALYSIS OF PILE FOUNDATION IN KARST AREA
1.
1. Central Research Institute of Building and Construction,MCC,Beijing 100088,China;
2.
2. China Jingye Engineering Corporation Limited,Beijing 100088,China;
3.
3. Beijing University of Science and Technology,Beijing 100083,China
Received Date: 2011-10-21
Publish Date:
2012-09-20
Abstract
Based on the indoor model test, the stability analysis of the rock mass in karst area affected by pile was carried out by numerical simulation with the finite difference method.From the calculation results, it was obtained the changing procedure of the stress and the internal strain of the rock mass around the karst cave under pile load and the failure surface position, and put forward the effective stability criterion of the pile in karst area.It was also summarized the failure mode and failure mechanism of piles foundation in karst area, including pile foundation damage and the surrounding rock mass failure of the cave.The failure mode was mainly affected by the size of the karst cave, the load location, the roof thickness, and etc, in which the roof thickness was the main influence factors
References
[2] 黄经秋.某岩溶厂址大口径钻孔嵌岩灌注桩基勘察及评价[G]//岩土工程技术文集.西安: 西安交通大学出版社,1998:258-266.
《工程地质手册》编写委员会.工程地质手册[M].北京: 中国建筑工业出版社,1992.
[3] 郑颖人,赵尚毅,邓楚键,等.有限元极限分析法发展及其在岩土工程中的应用[J].中国工程科学,2006,8(12): 39-61.
[4] 郑颖人,邱陈瑜,张红,等.关于土体隧洞围岩稳定性分析方法的探索[J].岩石力学与工程学报,2008,27(10): 1968-1980.
[5] 刘之葵,梁金城,朱寿增,等.岩溶区含溶洞岩石地基稳定性分析[J].岩土工程学报,2003,25(5): 629-633.
[6] 阳军生,张军,张起森,等.溶洞上方圆形基础地基极限承载力有限元分析[J].岩石力学与工程学报,2005,24(2): 296-301.
[7] 赵明华,曹文贵,何鹏祥,等.岩溶及采空区桥梁桩基桩端岩层安全厚度研究[J].岩土力学,2004,25(1): 64-68.
[8] 赵明华,袁腾方,黎莉,等.岩溶区桩端持力岩层安全厚度计算研究[J].公路,2003,1(1): 124-128.
[9] 赵明华,蒋冲,曹文贵.岩溶区嵌岩桩承载力及其下伏溶洞顶板安全厚度的研究[J].岩土工程学报,2007,29(11): 1618-1622.
[10] 赵明华,陈昌富,曹文贵,等.嵌岩桩桩端岩层抗冲切安全厚度研究[J].湘潭矿业学院学报,2003,18(4): 41-45.
Relative Articles
[1] DU Taoming, SONG Songke, LIU Wei, QUAN Xinrui, KONG Debiao. Elastoplastic Analytical Solutions for Borehole Contraction of Bored Piles by Boring Unloading Based on Unified Strength Theory [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 188-195. doi: 10.3724/j.gyjzG23092004
[2] HU Dazhu, YANG Zhenqiao, ZHU Qichang, WU Zhiping, ZHAO Juan. EXPERIMENTAL RESEARCH ON MECHANIC PROPERTIES OF PREFABRICATED REINFORCED CONCRETE BEAMS WITH H-SHAPED STEEL JOINTS [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 59-66,23. doi: 10.13204/j.gyjzG20042108
[3] Chi Yuyu Li Junhua Yu Kai Shi Zhe, . STUDY OF FORCE TRANSFER BEHAVIOR FOR SRC MEMBERS WITH STUD SHEAR CONNECTORS UNDER CYCLIC REVERSED LOADING AFTER EXPOSURE TO HIGH TEMPERATURES [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 159-163. doi: 10.13204/j.gyjz201507032
[4] Li Xiaofen, Liu Lixin, Zhang Huipeng. EXPERIMENTAL STUDY ON BOND BEHAVIORS OF PRESTRESSED STRANDS BY PULL-OUT TEST [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 65-69. doi: 10.13204/j.gyjz201505015
[5] Wu Huazong, Li Junhua, Chi Yuyu, Qiu Dongliang. EXPERIMENTAL STUDY OF BOND-SLIP BEHAVIOR OF SRC MEMBERS UNDER CYCLIC REVERSED LOADING AFTER HIGH TEMPERATURE [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 138-142. doi: 10.13204/j.gyjz201505029
[6] Hu Xinguo, Zhu Han. EFFECTS OF ADDING BASALT FIBER ON BOND PROPERTIES BETWEEN DEFORMED BAR AND CONCRETE [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(3): 84-87. doi: 10.13204/j.gyjz201303018
[7] Shen Bin, Qin Jie, Li Guoli, Qian Yingxin, Yang Zhiming. THE PRESTRESS CONSTRUCTION TECHNOLOGY OF A BEAM STRING STRUCTURE FOR BEIJING NORTH STATION [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(12): 12-14,25. doi: 10.13204/j.gyjz200812004
[8] Huang Mingxin, Qian Weijun, Huang Kailong, Chen Bin, Mao Cheng. ERECTION TECHNOLOGY OF LARGE SPAN CHORD -TENSION TRUSS STRUCTURE FOR HARBIN INTERNATIONAL EXHIBITION CENTER [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(9): 41-44. doi: 10.13204/j.gyjz200709007
[9] Jiang Jianping, Gao Guangyun. STUDY ON BEARING CAPACITY PER VOLUME OF BORED-CAST-PLACE PILES [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(9): 43-45.
[10] Huang Wei, Feng Dingguo. TEST AND RESEARCH ON SLIDING AND SHOCK INSULATION OF LARGE BAY REINFORCED CONCRETE AND BRICK CONSTRUCTION [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(12): 47-50,79. doi: 10.13204/j.gyjz200512014
[11] Pei Jie, Shui Weihou, Cao Hui. NEW MODEL OF LONG PILE LOAD TRANSFER FOR SOFT FOUNDATION IN SHANGHAI [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(7): 50-54,49. doi: 10.13204/j.gyjz200507015
[12] Yao Yong, Wang Ruheng, Lei Jinsong. ANALYSIS OF PRESSURE GROUTING AT PILE TIP OF BORED PILES IN PEBBLE STRATUM AND ITS BEARING CHARACTERISTICS [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(7): 59-63. doi: 10.13204/j.gyjz200507017
[13] Chen Liuguo, Fang Congqi, Kou Xinjian, Chen Bing. BOND PROPERTY OF REINFORCED CONCRETE WITH CORRODED REINFORCEMENT [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(5): 15-17. doi: 10.13204/j.gyjz200405005
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-04 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 0 1 2 3 4 5 6
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 18.8 % FULLTEXT : 18.8 % META : 80.6 % META : 80.6 % PDF : 0.5 % PDF : 0.5 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 19.9 % 其他 : 19.9 % China : 0.5 % China : 0.5 % 上海 : 0.5 % 上海 : 0.5 % 东莞 : 0.5 % 东莞 : 0.5 % 北京 : 4.8 % 北京 : 4.8 % 南京 : 0.5 % 南京 : 0.5 % 嘉兴 : 1.1 % 嘉兴 : 1.1 % 士嘉堡 : 1.6 % 士嘉堡 : 1.6 % 天津 : 1.1 % 天津 : 1.1 % 太原 : 2.2 % 太原 : 2.2 % 宣城 : 0.5 % 宣城 : 0.5 % 广州 : 1.1 % 广州 : 1.1 % 张家口 : 3.2 % 张家口 : 3.2 % 成都 : 0.5 % 成都 : 0.5 % 扬州 : 1.1 % 扬州 : 1.1 % 晋城 : 0.5 % 晋城 : 0.5 % 曼谷 : 9.7 % 曼谷 : 9.7 % 朝阳 : 0.5 % 朝阳 : 0.5 % 武汉 : 3.2 % 武汉 : 3.2 % 沈阳 : 0.5 % 沈阳 : 0.5 % 泰安 : 0.5 % 泰安 : 0.5 % 温州 : 1.6 % 温州 : 1.6 % 漯河 : 3.8 % 漯河 : 3.8 % 盐城 : 0.5 % 盐城 : 0.5 % 石家庄 : 0.5 % 石家庄 : 0.5 % 绍兴 : 1.6 % 绍兴 : 1.6 % 芒廷维尤 : 26.3 % 芒廷维尤 : 26.3 % 苏州 : 0.5 % 苏州 : 0.5 % 衢州 : 0.5 % 衢州 : 0.5 % 西宁 : 1.1 % 西宁 : 1.1 % 贵阳 : 0.5 % 贵阳 : 0.5 % 运城 : 5.4 % 运城 : 5.4 % 迪庆 : 0.5 % 迪庆 : 0.5 % 邯郸 : 1.1 % 邯郸 : 1.1 % 郑州 : 0.5 % 郑州 : 0.5 % 重庆 : 0.5 % 重庆 : 0.5 % 铜陵 : 0.5 % 铜陵 : 0.5 % 其他 China 上海 东莞 北京 南京 嘉兴 士嘉堡 天津 太原 宣城 广州 张家口 成都 扬州 晋城 曼谷 朝阳 武汉 沈阳 泰安 温州 漯河 盐城 石家庄 绍兴 芒廷维尤 苏州 衢州 西宁 贵阳 运城 迪庆 邯郸 郑州 重庆 铜陵