Chen Ya-qin, Zhang Hong-guang, Dang Fa-ning. APPLICATION OF DAUBECHIES CONDITIONAL WAVELET GALERKIN METHOD IN COMPUTATION OF STRUCTURAL FUNDAMENTAL COMPONENTS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(9): 61-65. doi: 10.13204/j.gyjz201209014
Citation:
Chen Ya-qin, Zhang Hong-guang, Dang Fa-ning. APPLICATION OF DAUBECHIES CONDITIONAL WAVELET GALERKIN METHOD IN COMPUTATION OF STRUCTURAL FUNDAMENTAL COMPONENTS[J]. INDUSTRIAL CONSTRUCTION , 2012, 42(9): 61-65. doi: 10.13204/j.gyjz201209014
Chen Ya-qin, Zhang Hong-guang, Dang Fa-ning. APPLICATION OF DAUBECHIES CONDITIONAL WAVELET GALERKIN METHOD IN COMPUTATION OF STRUCTURAL FUNDAMENTAL COMPONENTS[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(9): 61-65. doi: 10.13204/j.gyjz201209014
Citation:
Chen Ya-qin, Zhang Hong-guang, Dang Fa-ning. APPLICATION OF DAUBECHIES CONDITIONAL WAVELET GALERKIN METHOD IN COMPUTATION OF STRUCTURAL FUNDAMENTAL COMPONENTS[J]. INDUSTRIAL CONSTRUCTION , 2012, 42(9): 61-65. doi: 10.13204/j.gyjz201209014
APPLICATION OF DAUBECHIES CONDITIONAL WAVELET GALERKIN METHOD IN COMPUTATION OF STRUCTURAL FUNDAMENTAL COMPONENTS
1.
1. Institute of Geotechnical Engineering,Xi'an University of Technology,Xi'an 710048,China;
2.
2. Highway College,Chang'an University,Xi'an 710064,China
Received Date: 2012-03-07
Publish Date:
2012-09-20
Abstract
In order to promote the application of wavelet theory in structural computation, Daubechies wavelet Galerkin method is studied to computate the structural fundamental components.Because the displacement curve solved by the present Daubechies wavelet Galerkin method is not continuous, computation of high precision is hard to conduct.combining with generalized variational principle and Lagrangian multiplier method, Daubechies wavelet Galerkin method could be modified to form Daubechies conditional wavelet Galerkin method to be employed in structural computation.Taking the structural fundamental componentsbar and beam for examples, the construction of Daubechies conditional wavelet Galerkin method is elaborated.And the new method is compared with common FEM and present Daubechies wavelet Galerkin method at the same time.Typical computation examples were used to verify the accuracy of Daubechies conditional wavelet Galerkin method.
References
程正兴.小波分析与应用实例[M].西安: 西安交通大学出版社,2006: 1-8.
[2] 何正嘉,陈雪峰,李兵,等.小波有限元理论及其工程应用[M].北京: 科学出版社,2006: 3-12.
[3] 马军星.Daubechies 小波有限元理论及工程应用研究[D].西安: 西安交通大学,2003.
[4] 韩建刚.小波有限元理论及其在结构工程中的应用[D].西安: 西安建筑科技大学,2003.
: 98-118.
[5] 周又和,王记增,郑晓静.小波伽辽金有限元法在梁板结构中的应用[J].应用数学和力学,1998,19(8): 697-706.
[6] 刘小靖,王记增,周又和.一种适用于强非线性结构力学问题数值求解的修正小波伽辽金方法[J].固体力学学报,2011,32(3): 249-257.
[7] Daz A R.Wavelet-Galerkin Seheme for Analysis of Large-scaleProblems on Simple Domains [J].International Journal forNumerieal Methods in Engineering,1 999,44: 1599-1616.
[8] Kim Y Y, Jang G W.Hat Interpolation Wavelet Based-ScaleGalerkin Method for Thin-Walled Box Beam Analysis [J].International Journal for Numerical Methods in Engineering,2 002,53: 1575-1592.
[9] 林金木.有限单元法变分原理与应用[M].长沙: 湖南大学出版社,2
[10] 刘石泉,梁立孚.拉氏乘子法在广义变分原理和有限元素法中的应用[J].哈尔滨工程大学学报,2000,21(1): 29-32.
Relative Articles
[1] WANG Zhaonan, ZHANG Yuanhai. Galerkin Methods for Distortion of Thin-Walled Box Girders [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 112-116,207. doi: 10.13204/j.gyjzG21052901
[3] Zhang Li-ping. STUDY ON THE PREDICTION MODEL OF THE SINGLE PILE VERTICAL BEARING CAPACITY BASED ON WAVELET PROBABILISTIC NEURAL NETWORK AND ITS USE [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(9): 107-109,161. doi: 10.13204/j.gyjz201209023
[4] Yang Tianchun, Liao Jianping. HIGH-ORDER FINITE DIFFERENCE MODELING OF RAYLEIGH WAVE IN TWO-DIMENSIONAL ELASTIC MEDIA [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(8): 59-63. doi: 10.13204/j.gyjz201108016
[5] Hu Jing, Li Xinping, Qu Weilian. MULTI_SCALE ANALYSIS OF GEOTECHNICAL DEFORMATION MONITORING SIGNALS BY TIME DOMAIN REFLECTOMETRY BASED ON WAVELET TRANSFORM [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(2): 50-54. doi: 10.13204/j.gyjz200702013
[6] Hou Jian, Huang Qinghua, Wang Sheliang. DAMAGE IDENTIFICATION FOR REINFORCED CONCRETE STRUCTURES BASED ON WAVELET TRANSFORM [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 14-19. doi: 10.13204/j.gyjz200705004
[7] Xue Xiang, Huo Da, Teng Haiwen. DAMAGE INDENTIFICATION OF ENGINEERING STRUCTURE BY SPATIAL CONTINUOUS WAVELET TRANSFORM [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 10-13. doi: 10.13204/j.gyjz200705003
[8] Hong Jinxiang, Huang Wei, Miao Changwen. STUDY ON PREDICTION OF CONCRETE STRENGTH USING WAVELET NEURAL NETWORK [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(7): 47-49. doi: 10.13204/j.gyjz200407013
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 1 2 3 4 5 6
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 17.3 % FULLTEXT : 17.3 % META : 82.7 % META : 82.7 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 9.6 % 其他 : 9.6 % 北京 : 15.4 % 北京 : 15.4 % 天津 : 11.5 % 天津 : 11.5 % 张家口 : 7.7 % 张家口 : 7.7 % 杭州 : 1.9 % 杭州 : 1.9 % 湖州 : 3.8 % 湖州 : 3.8 % 漯河 : 1.9 % 漯河 : 1.9 % 石家庄 : 1.9 % 石家庄 : 1.9 % 芒廷维尤 : 40.4 % 芒廷维尤 : 40.4 % 西宁 : 3.8 % 西宁 : 3.8 % 重庆 : 1.9 % 重庆 : 1.9 % 其他 北京 天津 张家口 杭州 湖州 漯河 石家庄 芒廷维尤 西宁 重庆