Xue Jianyang, Liang Jiongfeng, Peng Xiuning, Wen Yongqiang. ELASTIC EARTHQUAKE RESPONSE ANALYSIS OF STEEL FRAME-BENT STRUCTURES OF MAIN BUILDINGS FOR LARGE THERMAL POWER PLANT[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(6): 137-141. doi: 10.13204/j.gyjz201206029
Citation:
Xue Jianyang, Liang Jiongfeng, Peng Xiuning, Wen Yongqiang. ELASTIC EARTHQUAKE RESPONSE ANALYSIS OF STEEL FRAME-BENT STRUCTURES OF MAIN BUILDINGS FOR LARGE THERMAL POWER PLANT[J]. INDUSTRIAL CONSTRUCTION , 2012, 42(6): 137-141. doi: 10.13204/j.gyjz201206029
Xue Jianyang, Liang Jiongfeng, Peng Xiuning, Wen Yongqiang. ELASTIC EARTHQUAKE RESPONSE ANALYSIS OF STEEL FRAME-BENT STRUCTURES OF MAIN BUILDINGS FOR LARGE THERMAL POWER PLANT[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(6): 137-141. doi: 10.13204/j.gyjz201206029
Citation:
Xue Jianyang, Liang Jiongfeng, Peng Xiuning, Wen Yongqiang. ELASTIC EARTHQUAKE RESPONSE ANALYSIS OF STEEL FRAME-BENT STRUCTURES OF MAIN BUILDINGS FOR LARGE THERMAL POWER PLANT[J]. INDUSTRIAL CONSTRUCTION , 2012, 42(6): 137-141. doi: 10.13204/j.gyjz201206029
ELASTIC EARTHQUAKE RESPONSE ANALYSIS OF STEEL FRAME-BENT STRUCTURES OF MAIN BUILDINGS FOR LARGE THERMAL POWER PLANT
1.
1. College of Civil Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China;
2.
2. College of Architecture Engineering,East China Institute of Technology,Nanchang 330013,China;
3.
3. College of Civil Engineering and Architecture,Guangxi University,Nanning 530004,China
Received Date: 2012-02-20
Publish Date:
2012-06-20
Abstract
The steel frame-bent structure is the main load-supporting structure in thermal power plants of China,whose structural quality and rigidity are distributed non-uniformly. It is particularly necessary to research earthquakeresistant behavior of this structure. The time history response analysis method was used to study the dynamicproperties, the interlayer deformation and the interlayer shear of steel frame-bent structures of main buildings for largethermal power plant. The results showed that there were many weak parts in the horizontal frame-bent and longitudinalframe-supporting structures, which must be strengthened when designed. The space model should be used to considerthe effect of torsion in structural calculation and analysis.
References
范建忠.大型火电厂主厂房的结构选型[J].福建电与电工,1995,15(4):22-25.
[2] 彭修宁,薛建阳,刘祖强,等.刚性钢框架异型节点性能及设计方法[J].土木建筑与环境工程,2010,32(3):22-26.
[3] 薛建阳,刘祖强,彭修宁,等.钢结构异型节点受力性能及非线性有限元分析[J].西安建筑科技大学学报,2010,42(5):609-613.
[4] 薛建阳,胡宗波,彭修宁,等.钢结构箱形柱与梁异型节点破坏机理的试验研究[J].建筑结构学报,2010(增刊):50-54.
[5] 薛建阳,刘祖强,胡宗波,等.钢框架异型节点核心区的受剪机理及承载力计算[J].地震工程与工程振动,2010,30(5):37-41.
[6] NEHRP Guidelines for the Seismic Rehabilitation of Buildings[S].FEMA-273,1997.
[7] Gupta B,Kunnath S K.Adaptive Spectra-Based PushoverProcedure for Seismic Evaluation of Structures[J].EarthquakeSpectra,2000,16(2):367-391.
Relative Articles
[1] WANG Lei, WU Yihui, JIANG Mengyao, SHU Qianjin. Research on the Bearing Capacity of Concrete-Filled Double-Skin Circular Aluminum Tube Short Columns Under Axial Compression [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 149-155. doi: 10.3724/j.gyjzG24050615
[2] CHEN Peng, SUN Shu. Finite Element Analysis and Bearing Capacity Calculation of Combined Cruciform CFST Columns [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 35-40,117. doi: 10.13204/j.gyjzG21022307
[3] ZHANG Yufen, ZHANG Yan, JIA Hongxin. Analysis and Calculations for Bearing Capacity of New Composite CFST Pier Columns Under Axial Compression [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 128-135,155. doi: 10.13204/j.gyjzG21020601
[4] HAO Wenxiu, YU Wanli, ZHANG Siyuan, XU Xiao, SONG Shanshan. EXPERIMENTAL RESEARCH ON MECHANICAL PROPERTIES OF REACTIVE POWDER CONCRETE SHORT COLUMNS CONFINED BY SQUARE STEEL TUBE UNDER AXIAL COMPRESSION [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(6): 117-122. doi: 10.13204/j.gyjzG20041902
[5] QIAO Qiyun, ZHANG Wenwen, CAO Wanlin, DONG Hongying, WU Haipeng. EXPERIMENTAL RESEARCH ON THE MECHANICAL PROPERTIES OF THIN-WALLED STAINLESS STEEL TUBE COMPOSITE SHORT COLUMNS FILLED WITH STEEL-REINFORCED CONCRETE UNDER AXIAL COMPRESSION [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(2): 143-149. doi: 10.13204/j.gyjz202002022
[6] Yu Feng, Cheng Anchun, Xu Guoshi, Li Deguang. NONLINEAR FINITE ELEMENT ANALYSIS OF PVC-FRP CONFINED CONCRETE SHORT COLUMN UNDER AXIAL COMPRESSION [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(4): 77-82. doi: 10.13204/j.gyjz201504014
[7] Ren Qingxin Liu Mingzhe Jia Lianguang, . BEHAVIOUR OF SPECIAL-SHAPED STEEL TUBULAR STUB COLUMNS UNDER AXIAL COMPRESSION [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(04): 16-20.
[8] Ren Qingxin, Li Qi, Jiang Zhiguo, Zhao Xiong. AXIAL COMPRESSION BEHAVIOUR OF ELLIPTICAL CONCRETE-FILLED STEEL TUBULAR LONG COLUMNS [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(04): 1-6.
[9] Ren Qingxin Gao Lei Wang Qingli, . BEHAVIOUR OF SPECIAL-SHAPED CONCRETE-FILLED STEEL TUBULAR STUB COLUMNS UNDER AXIAL COMPRESSION [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(04): 21-26.
[10] Xie Li, Chen Mengcheng, Huang Hong. EXPERIMENTAL STUDY ON RECTANGULAR CONCRETE-FILLED DOUBLE-SKIN STEEL TUBES SUBJECTED TO ECCENTRIC COMPRESSIVE LOAD [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(5): 128-131. doi: 10.13204/j.gyjz201305027
[11] Ke Xiaojun, Chen Zongping, Xia Kaiquan, Liu Siyuan. EXPERIMENTAL RESEARCH ON THE BEARING CAPACITY OF REINFORCED CONCRETE POLE STRENGTHENED BY CARBON FIBER REINFORCED POLYMER [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 69-72. doi: 10.13204/j.gyjz201204015
[12] Zhu Lei, Xu Qingfeng, Li Xiangmin, Zhu Chunming. EXPERIMENTAL RESEARCH ON AXIAL COMPRESSIVE RC COLUMNS WITH DRILLED CORE [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(7): 111-114,106. doi: 10.13204/j.gyjz200907030
[13] Guo Lanhui, Zhang Sumei. SIMPLIFIED METHOD OF BEARING CAPACITY OF CONCRETE-FILLED RECTANGULAR STEEL TUBE COLUMNS CONSIDERING LOCAL BUCKLING SUBJECTED TO AXIAL COMPRESSION [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(7): 98-102. doi: 10.13204/j.gyjz200907027
[14] Lu Fangwei, Li Siping, Sun Guojun, Jin Yunfa. LIMIT ANALYSIS OF EXPANSIVE CONCRETE-FILLED STEEL TUBE SHORT COLUMNS UNDER AXIAL COMPRESSION [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 25-27,21. doi: 10.13204/j.gyjz200708007
[15] Wang Zhibin, Tao Zhong, . EFFECT OF INITIAL IMPERFECTION ON MECHANICAL PROPERTY OF STUB COLUMNS OF SQUARE CONCRETE-FILLED THIN-WALLED STEEL TUBES [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(11): 19-22. doi: 10.13204/j.gyjz200611005
[16] Huo Jingsi, . DISCUSSIONS ON PRACTICAL CALCULATION OF AXIAL AND FLEXURAL LOAD VERSUS DEFORMATION CURVES OF CFST AFTER EXPOSURE TO FIRE [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(11): 6-10. doi: 10.13204/j.gyjz200611002
[17] Huang Hong Tao Zhong, . MECHANISM OF CONCRETE-FILLED DOUBLE-SKIN STEEL TUBULAR COLUMNS (CHS INNER AND CHS OUTER) SUBJECTED TO AXIAL COMPRESSION [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(11): 11-14,36. doi: 10.13204/j.gyjz200611003
[18] Tao Zhong, Zhuang Jinping, Yu Qing. MECHANICAL BEHAVIOR OF STUB COLUMNS OF FRP-CONFINED CONCRETE-FILLED STEEL TUBES [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(9): 20-23. doi: 10.13204/j.gyjz200509006
[19] Ma Xinbo, Zhang Sumei. INTRODUCTION TO EUROCODE 4 METHOD OF LOAD-CARRYING CAPACITY OF CONCRETE-FILLED CIRCULAR STEEL TUBES [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(2): 65-68,90. doi: 10.13204/j.gyjz200402020
[20] Zhang Chunmei, Yin Yi, Zhou Yun. ANALYSIS OF FACTORS INFLUENCING AXIAL COMPRESSIVE BEARING CAPACITY OF CONCRETE-FILLED STEEL TUBE COLUMN [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(10): 66-68. doi: 10.13204/j.gyjz200410020
Cited by Periodical cited type(14) 1. 桑树勋,皇凡生,单衍胜,周效志,刘世奇,韩思杰,郑司建,刘统,王梓良,王峰斌. 碎软低渗煤储层强化与煤层气地面开发技术进展. 煤炭科学技术. 2024(01): 196-210 . 2. 王双娇,李志清,田怡帆,李燕明,周应新,李丹丹. 微生物岩土工程技术的过去、现在与未来. 工程地质学报. 2024(01): 236-264 . 3. Yingxin Zhou,Zhiqing Li,Peng Zhang,Qi Wang,Weilin Pan,Shuangjiao Wang,Xiongyao Xie. Research status, hot spots, difficulties and future development direction of microbial geoengineering. Journal of Road Engineering. 2024(02): 234-255 . 4. 林文彬,王彬,高玉朋,柯劲涛,曹生根,孔秋平. 海水环境下微生物诱导碳酸钙沉淀胶结散体状强风化花岗岩崩解试验研究. 工业建筑. 2024(09): 1-9 . 本站查看 5. 王磊,王绪霞,李斐,崔明娟,杨晓旭,杨敏,闫云君. 微生物水泥相关酶的研究进展. 生物工程学报. 2022(02): 506-517 . 6. 梅奥然,李涛,高颖. 矿区地表裂隙土体MICP纤维加筋修复研究. 中国水运(下半月). 2022(01): 124-126 . 7. 朱正荣,程林,陈镜丞,杨益文,范俊洋. 长沙机场GTC项目大面积裸土快速抑尘绿色施工技术. 施工技术(中英文). 2022(16): 14-17+22 . 8. 邓尤术,裴超,李晓生,王瑞春,何玲珊,冯德銮. 基于微生物诱导碳酸钙技术的软土地层微生物砂桩室内模型试验研究. 广东土木与建筑. 2022(09): 35-37 . 9. 王磊,王博,刘志强,常新昊. 基于脲酶诱导碳酸钙沉淀的土体固化研究进展. 工业建筑. 2022(11): 57-66 . 本站查看 10. 马允栋. 沙埕湾跨海大桥筑岛施工潮间带钻孔桩技术探讨. 中国水运. 2022(02): 126-128 . 11. 张嘉睿,李涛,夏玉成,高颖,李殿鑫,王锐,梅奥然. 基于MICP方法固化采煤下行裂隙土体力学特性试验研究. 煤矿安全. 2021(09): 64-70 . 12. 王燕星,李驰,高利平,秦骁. 低磁场核磁共振测定盐环境下微生物诱导碳酸钙沉积固化材料的孔隙结构. 工业建筑. 2020(12): 1-7 . 本站查看 13. 陈洁,雷学文,黄泽彬,徐骏,吕建根,邱剑辉. 生态边坡稳定机制研究综述. 安徽农业大学学报. 2019(02): 282-288 . 14. 冷勐,杨建贵,徐小平,彭劼,崔起航,李杰. 微生物诱导碳酸钙沉积技术中的胶结液配方试验研究. 河南科学. 2019(10): 1627-1633 .
Other cited types(31)
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 2 4 6 8 10
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 13.8 % FULLTEXT : 13.8 % META : 84.3 % META : 84.3 % PDF : 1.9 % PDF : 1.9 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 12.6 % 其他 : 12.6 % China : 8.8 % China : 8.8 % 北京 : 5.0 % 北京 : 5.0 % 十堰 : 0.6 % 十堰 : 0.6 % 南京 : 0.6 % 南京 : 0.6 % 天津 : 0.6 % 天津 : 0.6 % 常德 : 1.3 % 常德 : 1.3 % 张家口 : 0.6 % 张家口 : 0.6 % 扬州 : 0.6 % 扬州 : 0.6 % 晋城 : 0.6 % 晋城 : 0.6 % 朝阳 : 0.6 % 朝阳 : 0.6 % 漯河 : 1.9 % 漯河 : 1.9 % 石家庄 : 2.5 % 石家庄 : 2.5 % 绍兴 : 0.6 % 绍兴 : 0.6 % 芒廷维尤 : 12.6 % 芒廷维尤 : 12.6 % 芝加哥 : 1.3 % 芝加哥 : 1.3 % 西宁 : 30.2 % 西宁 : 30.2 % 西安 : 2.5 % 西安 : 2.5 % 西雅图 : 1.9 % 西雅图 : 1.9 % 贵阳 : 0.6 % 贵阳 : 0.6 % 运城 : 9.4 % 运城 : 9.4 % 邯郸 : 0.6 % 邯郸 : 0.6 % 郑州 : 1.3 % 郑州 : 1.3 % 重庆 : 1.3 % 重庆 : 1.3 % 阳泉 : 0.6 % 阳泉 : 0.6 % 韶关 : 0.6 % 韶关 : 0.6 % 其他 China 北京 十堰 南京 天津 常德 张家口 扬州 晋城 朝阳 漯河 石家庄 绍兴 芒廷维尤 芝加哥 西宁 西安 西雅图 贵阳 运城 邯郸 郑州 重庆 阳泉 韶关