Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Zhang Yu, Yang Yongxin, Guan Zengwei. LITERATURE REVIEW OF BOND BEHAVIOR BETWEEN REINFORCING BAR AND CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(10): 33-36,32. doi: 10.13204/j.gyjz201110008
Citation: Zhang Yu, Yang Yongxin, Guan Zengwei. LITERATURE REVIEW OF BOND BEHAVIOR BETWEEN REINFORCING BAR AND CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(10): 33-36,32. doi: 10.13204/j.gyjz201110008

LITERATURE REVIEW OF BOND BEHAVIOR BETWEEN REINFORCING BAR AND CONCRETE

doi: 10.13204/j.gyjz201110008
  • Received Date: 2011-06-29
  • Publish Date: 2011-10-20
  • It is introduced that the research results of bond behavior between reinforcing steel bar, FRP rebar andconcrete in domestic and overseas, which include bond mechanism, stress process, influence factors, bond strength, bond length and constitutive relation. Finally, the research methods of bond behavior between reinforcing steel bar, FRP rebar and concrete are discussed .
  • [2] Makitani E,Irisawa I,Nishiura N.Investigation of Bond in Concrete Member with Fiber Reinforced Polymer Bars[C]∥International Symposium Fiber-reinforced-plastic Reinforcement for Concrete Structures,ACI SP-138,1993: 315-331.
    徐有邻,沈文都,汪洪.钢筋混凝土粘结锚固性能的试验研究[J].建筑结构学报,1994,15(3):26-37.
    [3] 徐有邻,邵卓民,沈文都,钢筋与混凝土的粘结锚固强度[J].建筑科学,1988(4):8-14.
    [4] Tighiouart B,Benmokrane B,Gao D.Investigation of Bond in Concrete Member with Fiber Reinforced Polymer(FRP) bars[J].Construction and Building Materials,1998(12):453-462.
    [5] Zenon Achillides,Kypros Pilakoutas.Bond Behavior of Fiber Reinforced Polymer Bars Under Direct Pullout Conditions[J].Journal of Composites for Constructure,2 004,8(2):173-181.
    [6] 高丹盈,Brahim B.纤维聚合物筋与混凝土粘结性能的影响因素[J].工业建筑,2001,31(2):9-14.
    [7] Belarbi A,Richardson D.Effect of Contamination on Reinforcing Bar-concrete Bond [J].Journal of Rerformence of Constructed Facilities,2010,24(3):206-214.
    [8] Malvar J L.Tensile and Bond Properties of GFRP Reinforcing Bars [J].J.ACI Materials Journal,1995,92(3):276-285.
    [9] 郝庆多,王言磊,候吉林,等.GFRP 带肋筋粘结性能试验研究[J].工程力学,2008,25(10):158-165.
    [10] 薛伟辰,郑乔文,杨雨,等.黏砂变形GFRP 筋粘结性能研究[J].土木工程学报,2007,40(12):59-68.
    [11] 薛伟辰,刘华杰.新型FRP 筋粘结性能研究[J].建筑结构学报,2004,25(2):104-109.
    [12] 郑乔文,薛伟辰.粘砂变形CFRP 筋的粘结滑移本构关系[J].工程力学,2008,25(9):162-169.
    [13] 王传志,滕智明.钢筋混凝土结构理论[M].北京: 中国建筑工业出版社,1985.
    [14] 高丹盈,Brahim B.纤维聚合物筋混凝土的粘结机理及锚固长度的计算方法[J].水利学报,2000,11(11):70-78.
    [15] Mirza S M,Honde J.Study of Bond Stress-slip Relationship in Reinforced Concrete[J].ACI,1970,76(1):19-46.
    [16] 赵羽习,金伟良.钢筋与混凝土粘结本构关系的试验研究[J].建筑结构学报,2002,23(1):32-37.
    [17] Ehsani M R,Saadatmanesh H,Tao S.Design Recommendation for Bond of GFRP Rebars to Concrete[J].Journal of Structure Engineering,1996,122(3):247-254.
    [18] Nilson A N.Internal Measurement of Bond-Slip[J].ACI,1972,69(7):439-441.
    [19] Eligehausen R,Popov E P,Bertero V V.Local Bond Stress-Slip Relationships of Deformed Bars Under Generalized Excitations [R].Earthquake Engrg.Ctr.(EERC) ,Univ.of California,Berkeley,Calif,1982,4: 69-80.
    [20] 赵卫平,肖建庄.带肋钢筋与混凝土间粘结滑移本构关系模型[J].工程力学,2011,28(4):164-171.
    [21] 宋玉普,赵国藩.钢筋与混凝土间的粘结滑移性能研究[J].大连工学院学报,1987,26(2):93-100.
    [22] Alunno R V,Galeota D,Giammatteo M M.Local Bond Stress-Slip Relationships of Glass Fiber Reinforced Plastic Bars Embeded in Concrete[J].Materials and Structures,1995,28 (6):340-344.
    [23] Cosenza E,Manfredi G,Realfonzo R.Behavior and Modeling of Bond of FRP Rebars to Concrete[J].Journal of Composites for Construction,1997,1(2):40-51.
    [24] 高丹盈,朱海堂,谢晶晶.纤维增强塑料筋混凝土粘结滑移本构关系模型[J].工业建筑,2003,33(7):41-44.
    [25] Alunno R,Galeota D,Giammatted M.Local Bond Stress-Slip Relationships of Glass Fibre Reinforced Plastic Bars Embedded in Concrete[J].Materials and Structures,1995(28):340-344.
    [26] 郝庆多,王言磊,欧进萍.GFRP /钢绞线复合筋与混凝土粘结滑移本构关系模型[J].工程力学,2009,26(5):62-71.
  • Relative Articles

    [1]JIN Wei, ZHAI Changhai, LIU Wen. Effects of In-Plane Damage of infill Walls on Their Out-of-Plane Bearing Capacity Reduction Factors[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 117-127. doi: 10.3724/j.gyjzG23121430
    [2]MENG, Shaoping, CAI, Xiaoning. RESEARCH PROGRESS ON PRESTRESSED SELF-RESETTING CONCRETE FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 1-6. doi: 10.13204/j.gyjz202001001
    [3]HUANG, Linjie, ZHOU, Zhen. INVESTIGATION ON INFLUENCE OF INFILL WALLS ON HIGHER MODE EFFECT OF SELF-CENTERING PRESTRESSED CONCRETE FRAME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(1): 34-39. doi: 10.13204/j.gyjz202001007
    [4]Liu Jie, Ye Jianshu, Chen Juanjuan. STUDY OF THE EFFECT OF SEGMENTAL JOINT WEAK LAYERS ON DEFORMATION OF LONG SPAN CANTILEVER-CASTING PC BOX GIRDERS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 70-75. doi: 10.13204/j.gyjz201502016
    [5]Yang Shubiao, Wei Zhitao, Xie Botao. INFLUENCE OF DIFFERENT CONNECTIONS OF SWAYING WALL ON SEISMIC PERFORMANCE FOR FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(11): 99-103. doi: 10.13204/j.gyjz2001411019
    [6]Liu Yong, Zong Qi. SUGGESTIONS ON PERFECTING CODE FOR ACCEPTANCE OF CONSTRUCTIONAL QUALITY OF MASONRY STRUCTURE TO LATER EMBEDDING BINDING STEEL BAR[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(10): 128-131. doi: 10.13204/j.gyjz201410026
    [7]Zhu Lanlan, Zheng Qizhen, Wang Dong, Yang Jue. SEISMIC APPRAISAL AND STRENGTHENING DESIGN OF A STOREY-ADDING-FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(1): 160-163,65. doi: 10.13204/j.gyjz201201031
    [8]Zhu He, Zhu Yong, Cai Qibiao, Jiang Hui. ANALYSIS OF ASEISMIC BEHAVIOR OF MASONRY-INFILLED RC FRAME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(3): 20-24,63. doi: 10.13204/j.gyjz201203004
    [9]Yan Hua, Li Ronghua. ASEISMIC PERFORMANCE ANALYSIS OF A MOMENT FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(9): 136-140. doi: 10.13204/j.gyjz201109031
    [10]Yan Anzhi, Sun Haili, Lu Jingjing, Zhang Zhanqian, He Na. TMD CONTROL RESEARCH OF HIGH-RISE REINFORCED CONCRETE FRAME SUBJECTED TO RECTANGULAR CYCLIC IMPULSE EXCITATION[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 6-10,118. doi: 10.13204/j.gyjz201104002
    [11]Li Yurong, Cai Kangfeng, Tang Yue. STUDY AND NEW DESIGN METHOD FOR CHEVRON-BRACED STEEL FRAMES[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(11): 116-121,130. doi: 10.13204/j.gyjz201011028
    [12]Huang Hua, Ye Yanxia, Zhu Qin, Zhang Guozhen, Jin Chi, Zhang Xiong. IMPACT OF FILLED WALL ON HORIZONTAL STIFFNESS OF FRAME STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(12): 34-38. doi: 10.13204/j.gyjz201012010
    [13]Wang Xuan, Li Bixiong, Wang Zhe, Xue Yongliang. REFLECT ON THE SEISMIC PROPERTY OF THE R.C. FRAME WITH INFILL WALLS DURING WENCHUAN EARTHQUAKE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(1): 25-29. doi: 10.13204/j.gyjz200901005
    [14]Wu Mingjun. THE ESTIMATION ON ESSENTIAL NATURE VIBRATION PERIOD OF REINFORCED CONCRETE FRAME STRUCTURE OF HIGH-RISE CONSTRUCTION[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(10): 57-60. doi: 10.13204/j.gyjz20081015
    [15]Zhu Junfeng, Huo Da, Wang Dongwei. ANALYSIS OF FAILURE DEPENDENCIES OF THE RC FRAME STRUCTURES BASED ON THE METHOD OF STATIC ELASTOPLASTICITY[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(2): 17-21,27. doi: 10.13204/j.gyjz200702005
    [16]Wang Chunwu, Meng Shaoping. ANALYSIS OF LATERAL RESTRAINTS OF PRESTRESSED CONCRETE FRAME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(8): 47-50. doi: 10.13204/j.gyjz200708013
    [17]Ai Bing, Wu Minzhe, Guo Di, Wang lixin. EXPERIMENT ON SEISMIC BEHAVIOR OF 4-STORY R.C. FRAME WITH BROAD-LIMB SPECIAL SHAPE COLUMN[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(2): 11-13,10. doi: 10.13204/j.gyjz200702003
    [18]Zhang Qiang, Pu Yi, Chen Kui-fu. RESPONSE ANALYSIS OF VISCOELASTIC CONCRETE FRAME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(6): 47-49. doi: 10.13204/j.gyjz200606015
    [19]Gao Jingbin, Zhang Huiying, Wu Wenxian. EXTENSION_STORY AND REINFORCEMENT DESIGN OF A FRAMED OFFICE BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(9): 92-94.
    [20]Zuo Xiaobao, Li Aiqun, Ni Lifeng, Chen Qingfu. SEISMIC RESPONSE ANALYSIS FOR FRAME STRUCTURE WITH SUPER-ELASTIC SHAPE MEMORY ALLOY DAMPER[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(10): 13-16,20. doi: 10.13204/j.gyjz200410004
  • Cited by

    Periodical cited type(37)

    1. 刘学春,高胜寒,陈学森. 喷砂处理钢板高强度螺栓摩擦型连接循环抗剪试验研究. 北京工业大学学报. 2024(01): 70-81 .
    2. 顾金超,杜文风,汤朋山. 我国装配式钢框架结构梁柱连接节点研究现状. 河南大学学报(自然科学版). 2024(03): 352-360 .
    3. 王伟,付柏超. 基于数据驱动和设计规则约束的钢框架-支撑结构平面布置智能设计方法. 建筑结构学报. 2024(07): 13-21 .
    4. 席飞,马天烨,阮雪君,唐道远. 小型装配式木塑建筑墙体稳态热工性能研究. 林产工业. 2024(06): 44-48 .
    5. 张相勇,陈华周,李任戈,李毅,陈振明,李静姝,曹洪涛,林波荣,周浩,黄祖坚. 钢结构装配式产品加工工序碳排放研究. 工业建筑. 2024(08): 140-148 . 本站查看
    6. 孟文静,陈科良,陈海燕,罗维,许锋. 装配式钢结构建筑全生命周期节能关键因素分析. 上海建材. 2024(05): 27-31+116 .
    7. 黄沿才,林琳. 装配式钢结构在闽南古建筑保护中的应用. 黎明职业大学学报. 2024(03): 47-54 .
    8. 方敬伟,王晓刚,秦毓. 考虑弱支撑的装配式钢结构抗震性能推覆分析. 福建建筑. 2023(03): 60-63 .
    9. 杜嘉伟. 基于金属铸造厂房的装配式钢结构施工方案. 中国建筑金属结构. 2023(03): 116-118 .
    10. 邱国林,宋宸睿. 双碳目标下装配式建筑技术发展研究. 绿色建造与智能建筑. 2023(04): 10-12 .
    11. 段国庆,吕云杰,方飞,陈凯杰,张浩远. 装配式钢结构高层住宅施工技术研究现状. 中国建筑金属结构. 2023(05): 103-105+109 .
    12. 王帅滨. 装配式钢结构建筑体系的应用前景研究与实例分析. 绿色建造与智能建筑. 2023(05): 45-48 .
    13. 刘伟,陈晓帅. 震后可恢复功能钢结构梁柱节点研究进展. 低温建筑技术. 2023(09): 115-118 .
    14. 汪盛. “双碳”目标下装配式建筑技术发展研究. 建筑科技. 2022(01): 44-46 .
    15. 刘冰,毛小勇,钱斌,吴钊毓. 装配式钢牛腿连接节点耐火性能试验研究. 防灾减灾工程学报. 2022(04): 826-834 .
    16. 郭建营,孟然,完海鹰,陈安英,沈万玉,李伟. 装配式高层钢结构住宅产业链信息化构架研究与工程应用. 安徽建筑. 2022(08): 167-169 .
    17. 李祖玮,潘文,兰香,周强. 中间柱型黏滞阻尼器装配式钢框架减震性能研究. 世界地震工程. 2022(03): 78-89 .
    18. 范俊伟,杨璐,王元清,班慧勇. 方钢管柱可拆卸螺栓拼接节点轴向力学性能研究. 建筑结构学报. 2022(10): 307-319 .
    19. 刘学春,孟坤. 内置吊钩和弯板的方钢管混凝土柱节点抗拉承载力性能研究. 工业建筑. 2022(09): 138-146 . 本站查看
    20. 马康,叶锡豪,于海丰,靳天姣. 装配式钢框架梁柱节点变形及数值模拟研究. 工业建筑. 2022(12): 94-100 . 本站查看
    21. 范俊伟,杨璐,班慧勇. 新型单边拧紧高强度螺栓摩擦型连接扭矩系数及抗剪性能试验研究. 工程力学. 2021(01): 119-128 .
    22. 郝际平,薛强,郭亮,孙晓岭. 装配式多、高层钢结构住宅建筑体系研究与进展. 中国建筑金属结构. 2020(03): 27-34 .
    23. 崔壮壮,王会彬,李韬魁. 型钢混凝土结构梁柱节点钢筋施工深化. 农家参谋. 2020(06): 152 .
    24. 王平. 高层建筑钢结构装配式施工技术应用分析. 城市建筑. 2020(05): 143-144 .
    25. 刘学春,王玥,邓玉萍. 高度可调节的装配式钢筋桁架叠合楼板受弯性能试验研究. 工业建筑. 2020(04): 10-18 . 本站查看
    26. 陈家春. 装配式钢结构关键点研究. 福建建筑. 2020(06): 37-40 .
    27. 韩奇文. 高层钢结构建筑装配式快速安装技术研究. 居业. 2020(07): 65+67 .
    28. 乔亭. 装配式钢结构住宅标准化的研究与应用. 居舍. 2020(22): 185-186 .
    29. 曹珑芳. 装配式钢结构连接节点研究综述. 低温建筑技术. 2020(11): 70-75 .
    30. 姜丽梅. 浅析BIM技术在装配式建筑中的应用. 信息记录材料. 2019(02): 25-26 .
    31. 雒加岩. 高层建筑钢结构双底板埋入式柱脚体系施工技术. 建筑施工. 2019(03): 413-415 .
    32. 牛君青. 预制装配式钢结构建筑设计的分析与研究. 居业. 2019(04): 69 .
    33. 高占阳,袁霓绯,李洪光,张雅丽. 装配式高层钢结构住宅现状及发展瓶颈研究. 钢结构(中英文). 2019(05): 56-60 .
    34. 陈阳敏. 新型装配式施工技术要点. 住宅产业. 2019(07): 41-43 .
    35. 潘惠芳. 厦门软件园三期D09号楼钢结构建筑应用分析. 福建建筑. 2019(08): 51-55+100 .
    36. 沙丽荣,于文涛. 新型装配式钢结构节点力学性能分析. 吉林建筑大学学报. 2019(05): 34-36 .
    37. 郭冬梅,王元清,伊永成. 装配式多层钢结构柱-柱连接的研究与展望. 交通科技与经济. 2019(06): 64-68+73 .

    Other cited types(45)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.3 %FULLTEXT: 12.3 %META: 87.7 %META: 87.7 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.6 %其他: 8.6 %China: 3.7 %China: 3.7 %上海: 1.2 %上海: 1.2 %北京: 4.9 %北京: 4.9 %南通: 1.2 %南通: 1.2 %天津: 1.2 %天津: 1.2 %太原: 1.2 %太原: 1.2 %广州: 1.2 %广州: 1.2 %张家口: 8.6 %张家口: 8.6 %扬州: 1.2 %扬州: 1.2 %杭州: 1.2 %杭州: 1.2 %武汉: 1.2 %武汉: 1.2 %济南: 2.5 %济南: 2.5 %温州: 1.2 %温州: 1.2 %漯河: 2.5 %漯河: 2.5 %福州: 2.5 %福州: 2.5 %芒廷维尤: 21.0 %芒廷维尤: 21.0 %西宁: 32.1 %西宁: 32.1 %重庆: 1.2 %重庆: 1.2 %青岛: 1.2 %青岛: 1.2 %其他China上海北京南通天津太原广州张家口扬州杭州武汉济南温州漯河福州芒廷维尤西宁重庆青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (155) PDF downloads(80) Cited by(82)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return