Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Yao Yangping, Li Chunliang, Feng Xing. ANALYSIS OF DEFORMATION OF EMBANKMENT ON SOFT CLAY BASED ON UNIFIED HARDENING MODEL[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(9): 38-42. doi: 10.13204/j.gyjz201109008
Citation: Yao Yangping, Li Chunliang, Feng Xing. ANALYSIS OF DEFORMATION OF EMBANKMENT ON SOFT CLAY BASED ON UNIFIED HARDENING MODEL[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(9): 38-42. doi: 10.13204/j.gyjz201109008

ANALYSIS OF DEFORMATION OF EMBANKMENT ON SOFT CLAY BASED ON UNIFIED HARDENING MODEL

doi: 10.13204/j.gyjz201109008
  • Received Date: 2011-06-06
  • Publish Date: 2011-09-20
  • Besides large compressibility, low permeability, and long deformation time, soft soil sometimes has some overconsolidation characteristics, which increases the difficulty to estimate and calculate the ground settlement. The unified hardening model (UH model) can describe many characteristics of clays well, including stress-strain relationships, stress dilatancy, strain hardening and softening, and path dependency behavior. The parameters in the model as are the same as those in the Cam-clay model. By using the the UH model, numerical simulation of triaxial tests was performed, while the FEM results and unit predicted results using UH model were compared. Threedimensional finite element analysis of deformation of an embankment on soft clay was carried out combining with an actual project. The changes in excess pore pressure, ground settlement and lateral displacement were analyzed and compared with the measured data.
  • [2] 孙德安,甄文战,黄文雄.三维弹- 塑性模型在路堤软基固结分析中应用[J].岩土力学,2009,30(3):669-674.
    Huang W X, Fityus S, Bishop D, et al.Finite-Element Parametric Study of the Consolidation Behavior of a Trial Embankment on Soft Clay [J].International Journal of Geomechanics,2006,6(5):1-14.
    [3] Yao Y P,Luo T,Sun D A,el at.A Simple 3-Constitutive Model for Both Clay and Sand[J].Chinese Journal of Geotechnical Engineering,2002,24(2):240-246.
    [4] 姚仰平,路德春,周安楠.岩土类材料的变换应力空间及其应用[J].岩土工程学报,2005,29(1):24-29.
    [5] 姚仰平,侯伟,周安楠.基于伏斯列夫面的超固结土模型[J].中国科学: E 辑,2007,37(11):1417-1429.
    [6] Yao Y P,Zhou A N,Lu D C.Extended Transformed Stress Space for Geomaterials and Its Application[J].Journal of Engineering Mechanics,ASCE,2007,133(10):1115-1123.
    [7] 姚仰平,李自强,侯伟,等.基于改进伏斯列夫线的超固结土本构模型[J].水利学报,2008,39(11):1244-1250.
    [8] Yao Y P,Hou W,Zhou A N.UH model: Three-Dimensional Unified Hardening Model for Overconsolidated Clays [J].Geotechnique,2009,59(5):451-469.
    [9] 姚仰平,冯兴,黄祥,等.UH 模型在有限元分析中的应用[J].岩土力学,2010,31(1):237-245.
    [10] 庄茁.连续体和结构的非线性有限元[M].北京: 清华大学出版社,2002.
  • Relative Articles

    [1]ZHENG Wei, WANG Zhen, GU Linlin, LI Hujun, MA Junnan. Experimental Research on Threshold Values of Deformation Failure of Rock Discontinuities with Different Roughness Under Cyclic Loading and Unloading[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(2): 163-168. doi: 10.13204/j.gyjzG21120802
    [2]SHI Xudong, HAN Yuanhai, TIAN Jialun. Experimental Study on Effective Preloading Performance of Prestressed Concrete with Given Water Content at Different Ultralow Temperatures[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 181-186,193. doi: 10.13204/j.gyjzG22052706
    [3]LONG Yifei, PAN Chan, GUO Xiaoqin, LI Yangwei. Experimental Research on Dynamic Mechanical Properties of Rubber Concrete Subjected to Freeze-Thaw Cycles[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 163-170,139. doi: 10.13204/j.gyjzG21091202
    [4]LU Zhaohong, WANG Kaibo, WANG Zunce, ZHANG Dong, YAN Feng, OUYANG Xin. EFFECT OF THE MOISTURE CONTENT ON MECHANICAL PROPERTIES OF FROZEN SILTY CLAY[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 153-157,97. doi: 10.13204/j.gyjzG20040904
    [5]CHEN Ronggang, MA Jing, CUI Zhuangzhuang, YUAN Guanglin. EXPERIMENTAL INVESTIGATION INTO THE INFLUENCE OF WATER CONTENT ON THE SHEAR CHARACTERISTICS OF PILE SOIL-INTERFACE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 102-105,31. doi: 10.13204/j.gyjzG20082406
    [15]Cao Dafu, Zhou Min, Ge Wenjie, Yuan Shenfeng. STUDY OF THE SHEAR BEHAVIORS OF RC BEAMS AFTER FREEZE-THAW CYCLES[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 32-37. doi: 10.13204/j.gyjz201502008
    [16]Su Xiaoping, Zhang Li, Guo Jinhui. EXPERIMENTAL STUDY OF CONCRETE DURABILITY UNDER THE ACTION OF SINGLE SALT CORROSION AND FREEZING-THAWING CYCLES[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(09): 110-113.
    [17]Guan Qiaoyan, Gao Danying, Li Shan. STUDY ON CFRP-CONCRETE BOND BEHAVIOR SUBJECTED TO FREEZE-THAW CYCLES[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(6): 9-11,26. doi: 10.13204/j.gyjz201006003
    [18]Ji Xiaodong, Zhao Ning, Song Yupu. EXPERIMENTAL STUDY ON BOND BEHAVIOR'S DETERIORATION BETWEEN DEFORMED STEEL BAR AND CONCRETE AFTER FREEZING AND THAWING[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(1): 87-91. doi: 10.13204/j.gyjz201001022
  • Cited by

    Periodical cited type(7)

    1. 胡金泉,裴万胜,王冲,陈诤. 超低温混凝土力学性能与抗冻融耐久性研究进展. 冰川冻土. 2024(01): 111-125 .
    2. 贾晓光. 冻融循环作用下高强自密实混凝土抗冻耐久性研究. 工程技术研究. 2023(13): 118-122 .
    3. 时旭东,韩大全,李亚强. 应力水平对混凝土超低温下受压变形性能影响的试验研究. 工业建筑. 2022(02): 120-125 . 本站查看
    4. 时旭东,田佳伦,汪文强. 不同强度等级混凝土超低温冻融循环作用下的变形性能试验研究. 低温工程. 2021(01): 35-42+74 .
    5. 时旭东,崔一丹,钱磊. 关键影响因素耦合作用下混凝土低温弹性模量试验研究. 混凝土. 2021(07): 1-6 .
    6. 沈子豪,李扬,刘奎周. 超低温加、卸载下水泥砂浆变形特性试验研究. 硅酸盐通报. 2019(06): 1656-1662 .
    7. 田科宏,李建伟,罗伟. 哈大客运专线双城北站线间混凝土冻融防护处理试验研究. 中国建筑防水. 2018(22): 35-37 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-022024-032024-042024-052024-062024-072024-082024-092024-102024-112024-122025-01012345
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.0 %FULLTEXT: 8.0 %META: 92.0 %META: 92.0 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.0 %其他: 4.0 %China: 2.7 %China: 2.7 %兰州: 2.7 %兰州: 2.7 %北京: 13.3 %北京: 13.3 %大连: 1.3 %大连: 1.3 %天津: 1.3 %天津: 1.3 %成都: 1.3 %成都: 1.3 %无锡: 2.7 %无锡: 2.7 %昆明: 1.3 %昆明: 1.3 %朝阳: 1.3 %朝阳: 1.3 %杭州: 1.3 %杭州: 1.3 %湖州: 1.3 %湖州: 1.3 %漯河: 2.7 %漯河: 2.7 %芒廷维尤: 14.7 %芒廷维尤: 14.7 %苏州: 1.3 %苏州: 1.3 %衢州: 1.3 %衢州: 1.3 %西宁: 38.7 %西宁: 38.7 %西安: 1.3 %西安: 1.3 %贵阳: 1.3 %贵阳: 1.3 %运城: 1.3 %运城: 1.3 %重庆: 1.3 %重庆: 1.3 %长沙: 1.3 %长沙: 1.3 %其他China兰州北京大连天津成都无锡昆明朝阳杭州湖州漯河芒廷维尤苏州衢州西宁西安贵阳运城重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (117) PDF downloads(69) Cited by(14)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return