Yang Yinghua, Wei Jun, Feng Zhen, Chen Chuanzheng. STUDY OF WIND-INDUCED VIBRATION RESPONSES AND WIND-INDUCED VIBRATION FACTOR FOR LONG-SPAN GABLE ROOFS SUPPORTED BY STEEL TRUSSES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 124-129. doi: 10.13204/j.gyjz201101028
Citation:
Yang Yinghua, Wei Jun, Feng Zhen, Chen Chuanzheng. STUDY OF WIND-INDUCED VIBRATION RESPONSES AND WIND-INDUCED VIBRATION FACTOR FOR LONG-SPAN GABLE ROOFS SUPPORTED BY STEEL TRUSSES[J]. INDUSTRIAL CONSTRUCTION , 2011, 41(1): 124-129. doi: 10.13204/j.gyjz201101028
Yang Yinghua, Wei Jun, Feng Zhen, Chen Chuanzheng. STUDY OF WIND-INDUCED VIBRATION RESPONSES AND WIND-INDUCED VIBRATION FACTOR FOR LONG-SPAN GABLE ROOFS SUPPORTED BY STEEL TRUSSES[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(1): 124-129. doi: 10.13204/j.gyjz201101028
Citation:
Yang Yinghua, Wei Jun, Feng Zhen, Chen Chuanzheng. STUDY OF WIND-INDUCED VIBRATION RESPONSES AND WIND-INDUCED VIBRATION FACTOR FOR LONG-SPAN GABLE ROOFS SUPPORTED BY STEEL TRUSSES[J]. INDUSTRIAL CONSTRUCTION , 2011, 41(1): 124-129. doi: 10.13204/j.gyjz201101028
STUDY OF WIND-INDUCED VIBRATION RESPONSES AND WIND-INDUCED VIBRATION FACTOR FOR LONG-SPAN GABLE ROOFS SUPPORTED BY STEEL TRUSSES
1.
1. Xi’an University of Architecture and Technology,Xi’an 710055,China;
2.
2. Xi’an Branch of SCIEG Beijing Huayu Engineering Co. Ltd,Xi’an 710061,China;
3.
3. Northwest Electric Power Design Institute,Xi’an 710075,China
Received Date: 2010-07-05
Publish Date:
2011-01-20
Abstract
Based on random vibration theory,a wind power spectral analysis method in the frequency domain was used to analyze the wind induced vibration of long-span gable roofs supported by steel truss in this paper.The Davenport wind spectrum was used to calculate wind-induced vibration responses and wind vibration factor of the gable roofs.The influences of parameters such as the basic wind pressure,span and weight of the roof,damping ratio,terrain categories and support restraints,and etc on the wind vibration factor were discussed.Using results of the parametric analysis,a practical wind-induced vibration factor formula for long-span steel truss supporting gable roofs was summarized and recommeded.
References
[2] 杨应华, 冯真, 陈传铮.大跨度梯形钢屋架双坡屋盖风振系数研究[J].工业建筑, 2009, 39(增刊).
GB 500092001建筑结构荷载规范[S].
[3] 庄表中, 梁以德, 张佑启.结构随机振动[M].北京:国防工业出版社, 1995.
[4] 张相庭.结构风工程理论规范实践[M].北京:中国建筑工业出版社, 2006.
[5] 张相庭.结构风压和风振计算[M].上海:同济大学出版社, 1985.
[6] 陆峰.大跨度平屋面结构的风振响应和风振系数研究[D].杭州:浙江大学, 2001.
[7] 05G511梯形钢屋架[S].
[8] 05G515轻型屋面梯形钢屋架[S].
Relative Articles
[1] ZHOU Meng, ZHANG Yiyao, WU Bin. Wind-Induced Vibration Response Analysis of Overhead Transmission Lines Under Icing Condition [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 8-14. doi: 10.13204/j.gyjzG21070113
[2] CAO Meigen, ZHANG Ruoyu, ZHU Yunxiang, WANG Yu, KONG Fanfang, PAN Yiwei. Research on Wind Resistant Reinforcement of In-Plane Cables of Transmission Line Tower and Influence of Design Parameters [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 48-56.
[3] JIN Xin, HUANG Dong-mei, YAO Ming-zhi, LI Xiao-han. Investigation of Influence of Fishscale Cladding and Aerodynamic Interference on Wind Load and Wind-Induced Response of a Chimney [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 178-185. doi: 10.13204/j.gyjzg21091006
[4] LUO Kerong, YU Liang, SHU Ganping, LI Buhui, NING Shuaipeng. Analysis of Wind-Induced Response of a 500 kV Long-Span Transmission Tower-Line System Crossing the Yangtze River [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 1-8. doi: 10.13204/j.gyjzG21121615
[5] XIA Liang, ZHANG Mingshan, LI Benyue. WIND-INDUCED VIBRATION ANALYSIS AND WIND-RESISTANT DESIGN OF A CANTILEVERED STRING STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 93-98,195. doi: 10.13204/j.gyjzG20032402
[6] NIE Zhulin, OU Tong, XIN Zhiyong, ZHU Yong, WANG Dayang. OPTIMIZATION OF WIND VIBRATION RESPONSES OF BUILDING STRUCTURES PLANTED ARBORS ON ROOFS [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 121-127. doi: 10.13204/j.gyjzG20050604
[7] HAN Miao, LI Shuangchi, DU Hongkai, LI Wanjun, HAN Rong. ANALYSIS ON WIND VIBRATION RESPONSE AND DAMPING VIBRATION REDUCTION OF LONG-SPAN GRID STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(5): 114-120. doi: 10.13204/j.gyjz202005019
[12] Zhang Mingliang, Li Qiusheng. EXPERIMENTAL INVESTIGATION ON WIND LOAD CHARACTERISTICS OF ROOF STRUCTURE FOR JILIN RAILWAY STATION [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 123-130,30. doi: 10.13204/j.gyjz201204026
[13] Shu Xingping, Yan Xinghua, Zou Hao. SIMULATION OF FLUCTUATING WIND LOAD ON ANGLE-STEEL COMMUNICATION TOWER AND ANALYSIS OF WIND-INDUCED VIBRATION RESPONSES [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 119-123. doi: 10.13204/j.gyjz201104025
[14] Zhang Jian-sheng, Wu Yue, Shen Shi-zhao. STUDY ON WIND-INDUCED VIBRATION OF SINGLE-LAYER CYLINDRICAL RETICULATED SHELL STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(10): 69-71. doi: 10.13204/j.gyjz200610019
[15] Yang Dongsheng, Lan Zongjian. STUDY ON WIND-INDUCED RESPONSE OF MULTIFUNCTIONAL VIBRATION-ABSORPTION MEGAFRAME STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(1): 30-32. doi: 10.13204/j.gyjz200501009
[16] Wang Heng, Sun Bingnan, Lou Wenjuan, Shen Guohui, . CALCULATION OF WIND-INDUCED VIBRATION FACTOR OF ROOF FOR TAIZHOU STADIUM [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(4): 82-84,94. doi: 10.13204/j.gyjz200504024
[17] Wang Yuanqing, Ren Zhihong, Shi Yongjiu, Wu Lili. WIND VIBRATION ANALYSIS OF FISH-BELLIED FLEXIBLE SUPPORTING SYSTEM FOR POINT-SUPPORTED GLASS BUILDING [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(2): 23-26. doi: 10.13204/j.gyjz200502006
[18] Zhang Zengdang, Chen Shuifu. WIND-INDUCED VIBRATION RESPONSE ANALYSIS AND STRUCTURAL SCHEME APPRAISAL FOR A THREE-PIPE RC CHIMNEY [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(5): 37-39. doi: 10.13204/j.gyjz200405012
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 2 4 6 8
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 14.3 % FULLTEXT : 14.3 % META : 85.7 % META : 85.7 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 5.7 % 其他 : 5.7 % 上海 : 5.7 % 上海 : 5.7 % 北京 : 17.1 % 北京 : 17.1 % 天津 : 2.9 % 天津 : 2.9 % 张家口 : 2.9 % 张家口 : 2.9 % 扬州 : 5.7 % 扬州 : 5.7 % 芒廷维尤 : 42.9 % 芒廷维尤 : 42.9 % 西宁 : 11.4 % 西宁 : 11.4 % 西雅图 : 2.9 % 西雅图 : 2.9 % 重庆 : 2.9 % 重庆 : 2.9 % 其他 上海 北京 天津 张家口 扬州 芒廷维尤 西宁 西雅图 重庆