Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHAO Bida, GONG Dacheng, LI Ruifeng, YU Chenda, ZHANG Xuefeng, ZHOU Haijing. Experimental Research on Hysteretic Properties of Partially Encased Steel- Concrete Composite Beams[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(1): 144-150,8. doi: 10.13204/j.gyjzG22051025
Citation: Wu Sheng, Zhang Sumei, Yang Hua, Wang Fujiang. RESEARCH ON THE ENERGY-SAVING DESIGN SCHEMES OF LIGHT GAUGE STEEL-FRAMED COMPOSITE WALLS OF RESIDENTIAL CONSTRUCTION[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(6): 60-67,73. doi: 10.13204/j.gyjz201006015

RESEARCH ON THE ENERGY-SAVING DESIGN SCHEMES OF LIGHT GAUGE STEEL-FRAMED COMPOSITE WALLS OF RESIDENTIAL CONSTRUCTION

doi: 10.13204/j.gyjz201006015
  • Received Date: 2010-02-20
  • Publish Date: 2010-06-20
  • Two thermal behavior experiments of light gauge steel-framed composite walls with slotted studs and withexternal thermal insulation layers were carried in the lab of combined energy consumption test board for components of building envelope in school of municipal and environmental engineering at HIT. The method of thermocouple temperature measurement was used. The heat transfer coefficients and temperature of the measure points of composite wall were deeply investigated. Two conclusions were drawn from the test. According the test,the web slotted studs can reduce heat loss of the light gauge steel-framed composite walls,thus weakening the thermal bridge effect of the location in stud part,then significantly improve the thermal insulation properties of the composite walls; the composite wall heat transfer coefficients of the two test schemes are 0.315 W/ (m2K) and 0.250 W/ (m2K),which can meet the residential building envelope heat transfer coefficient limit value of cold areas well. Using the standard studs which recommended by Light Gauge Steel Framing Assembly Housing Specification(JG /T 1822005),standard steel-framed walls were made up and selected as the research object. ANSYS finite element model is used to analyse the wall heat transfer properties. To obtain the goal as the light gauge steel-framed composite wall to meet the Harbin area construction outer wall energy conservation standard,the comprehensive inspection and contrast were analyzed of mean heat conductivity of four kinds of walls,the walls economic comparison was carried on,too. The design scheme of the light gauge steel-framed composite walls was proposed to meet the construction energy conservation standard in cold areas in China.
  • [2] 殷大伟. 轻钢龙骨墙体传热与受弯性能分析[D]. 哈尔滨:哈尔滨工业大学,2006.
    JGJ 2695 民用建筑节能设计标准(采暖居住建筑部分)[S].
    [3] Kosny J, Christian J E. Thermal Evaluation of Several Configurations of Insulation and Structural Materials for Some Metal Stud Walls [J]. Energy and Buildings,1995,22:157-163.
    [4] Kosny J,Christian J E. Reducing the Uncertainties Associated with Using the ASHRAE Zone Method for R-Value Calculations of Metal Frame Walls [R]. ASHRAE Transactions,1995: 779-788.
    [5] Barbour C E,Goodrow J. The Thermal Performance of Steel-Framed Walls [R]. ASHRAE Transactions,1995:766-778.
    [6] Salonvaara M,Nieminen J. Hygrothermal Performance of a New Light Gauge Steel-Framed Envelope System [R]. ASHRAE Transactions,1998:1256-1262.
    [7] 崔加全. 腹板开孔C 形截面构件传热与力学性能的研究[D].哈尔滨:哈尔滨工业大学,2003.
    [8] 贝晗. 轻钢龙骨墙体传热与轴压性能分析[D]. 哈尔滨:哈尔滨工业大学,2006.
    [9] 武胜. 新型冷弯构件力学性能及轻钢龙骨复合墙体传热性能研究[D]. 哈尔滨:哈尔滨工业大学,2008.
    [10] JG/T 1822005 低层轻型钢结构装配式住宅技术要求[S].
    [11] GB 500182002 冷弯薄壁型钢结构技术规范[S].
    [12] GB 5017693 民用建筑热工设计规范[S].
    [13] 章熙民,任泽霈,梅飞鸣. 传热学[M]. 4 版. 北京: 中国建筑工业出版社,2003.
    [14] 黑龙江省室内装饰行业管理中心. 黑龙江省室内装饰工程预算定额[M]:上册. 哈尔滨: 黑龙江科学技术出版社,2003.
    [15] 黑龙江省建设委员会. 黑龙江省建设工程预算定额(土建)[M]. 哈尔滨: 黑龙江科学技术出版社,2000.
    [16] 武胜,张素梅,杨华. 轻钢龙骨墙体经济性研究[J]. 钢结构,2009,24(4) :49-53.
  • Relative Articles

    [1]LIN Shuchao, FAN Guangli, KANG Jinjun, ZHOU Yijun. OPTIMIZATION DESIGN AND FEM VERIFICATION OF VARIABLE CURVATURE-FRICTION PENDULUM SYSTEMS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 128-135. doi: 10.13204/j.gyjz201906030005
    [2]CHANG Zhaoqun, LIU Boquan, HAN Meng, BAI Tao, XING Guohua, WANG Shuangbing. DESIGN AND NUMERICAL ANALYSIS OF AN INNOVATIVE SELF-CENTERING FRICTION DAMPER[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 138-142,221. doi: 10.13204/j.gyjzG20080402
    [6]Peng Lingyun, Xue Tao, Kang Yingjie. PERFORMANCE EXPERIMENT AND FINITE ELEMENT ANALYSIS OF SHAFTLESS VISCOUS DAMPER[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 61-64. doi: 10.13204/j.gyjz201505014
    [7]Xu Weibing, Yan Weiming, Chen Yanjiang, Li Yong, Huang Feihong. EXPERIMENT STUDY AND NUMERICAL SIMULATION ANALYSIS OF METAL ALLOY BRACE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(3): 52-56. doi: 10.13204/j.gyjz201303011
    [8]Li Yongmei, Zhang Ruiguo, Li Feng, Li Xuesong. FINITE ELEMENT ANALYSIS OF BEIJING NEW PLANETARIUM[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(3): 80-83. doi: 10.13204/j.gyjz200503027
    [9]Wang Wei, Chen Xiaobao. FINITE ELEMENT ANALYSIS OF CAST IN PLACE HOLLOW IRREGULAR FLOOR OF PRESTRESSED CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(2): 47-49,63. doi: 10.13204/j.gyjz200502013
    [10]Zong Lan, Sui Chengquan. THE DYNAMIC ANALYSIS OF FINITE ELEMENT OF FRICTION-DAMPED SHEAR WALL[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(6): 17-20. doi: 10.13204/j.gyjz200506005
    [11]Liu Guanglei, Song Erxiang. FINITE ELEMENT ANALYSIS OF RIGID PILE COMPOSITE FOUNDATION UNDER HORIZONTAL LOAD[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(11): 41-44,26. doi: 10.13204/j.gyjz200411011
  • Cited by

    Periodical cited type(6)

    1. 刘宏欣,贾水钟,李杰,李亚明,张仪放,蔡艳清,潘法超. 部分包覆钢-混凝土组合梁柱节点抗震性能试验研究. 建筑结构. 2024(04): 18-23 .
    2. 贾水钟,刘宏欣,李亚明,孙求知,张朕磊,钱桦. 工艺孔对大截面部分包覆钢-混凝土组合梁受弯性能影响的试验研究. 建筑结构. 2024(04): 9-17 .
    3. 李康,李俊华,王维宸,周培松,盛雷军,刘铨,陈国灿. 装配式钢筋混凝土叠合次梁-PEC主梁节点受力性能. 建筑结构学报. 2024(S1): 14-24 .
    4. 陆天宇,杨克家,李杰,蒋路,楼汉忠. 波浪腹板PEC梁抗震延性性能试验研究. 地震工程与工程振动. 2024(05): 108-117 .
    5. 龚树红,陈刚,顾明明,胡夏闽. 部分包覆钢-混凝土组合梁在负弯矩作用下的刚度分析. 钢结构(中英文). 2023(06): 51-60 .
    6. 樊俊威,章雪峰,张豪,高伦浩,傅林峰,俞晨达. 部分包覆钢-混凝土组合蜂窝框架梁抗震设计研究. 建筑结构. 2023(S1): 1852-1855 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.4 %FULLTEXT: 8.4 %META: 90.6 %META: 90.6 %PDF: 1.0 %PDF: 1.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.9 %其他: 8.9 %东莞: 4.7 %东莞: 4.7 %保定: 0.5 %保定: 0.5 %北京: 2.6 %北京: 2.6 %十堰: 2.1 %十堰: 2.1 %南京: 2.1 %南京: 2.1 %南宁: 0.5 %南宁: 0.5 %呼和浩特: 1.0 %呼和浩特: 1.0 %唐山: 0.5 %唐山: 0.5 %嘉兴: 2.1 %嘉兴: 2.1 %天津: 2.6 %天津: 2.6 %安曼: 1.6 %安曼: 1.6 %宣城: 1.0 %宣城: 1.0 %尼科西亚: 3.1 %尼科西亚: 3.1 %常州: 0.5 %常州: 0.5 %常德: 0.5 %常德: 0.5 %广州: 4.2 %广州: 4.2 %张家口: 2.1 %张家口: 2.1 %成都: 1.0 %成都: 1.0 %扬州: 3.1 %扬州: 3.1 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.5 %朝阳: 0.5 %杭州: 2.1 %杭州: 2.1 %武汉: 1.0 %武汉: 1.0 %淮北: 0.5 %淮北: 0.5 %深圳: 0.5 %深圳: 0.5 %温州: 0.5 %温州: 0.5 %漯河: 7.3 %漯河: 7.3 %绍兴: 1.0 %绍兴: 1.0 %芒廷维尤: 8.4 %芒廷维尤: 8.4 %芝加哥: 1.6 %芝加哥: 1.6 %苏州: 5.8 %苏州: 5.8 %荆州: 0.5 %荆州: 0.5 %蚌埠: 1.0 %蚌埠: 1.0 %西宁: 6.8 %西宁: 6.8 %西安: 1.6 %西安: 1.6 %西雅图: 0.5 %西雅图: 0.5 %贵阳: 1.0 %贵阳: 1.0 %运城: 5.8 %运城: 5.8 %邯郸: 0.5 %邯郸: 0.5 %郑州: 1.6 %郑州: 1.6 %重庆: 2.6 %重庆: 2.6 %长沙: 1.0 %长沙: 1.0 %黄石: 2.1 %黄石: 2.1 %其他东莞保定北京十堰南京南宁呼和浩特唐山嘉兴天津安曼宣城尼科西亚常州常德广州张家口成都扬州晋城朝阳杭州武汉淮北深圳温州漯河绍兴芒廷维尤芝加哥苏州荆州蚌埠西宁西安西雅图贵阳运城邯郸郑州重庆长沙黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (147) PDF downloads(48) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return