Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Wei Gang. STUDY ON CALCULATION FOR WIDTH PARAMETER OF SURFACE SETTLEMENT TROUGH INDUCED BY SHIELD TUNNEL[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 74-79. doi: 10.13204/j.gyjz200912019
Citation: Wei Gang. STUDY ON CALCULATION FOR WIDTH PARAMETER OF SURFACE SETTLEMENT TROUGH INDUCED BY SHIELD TUNNEL[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 74-79. doi: 10.13204/j.gyjz200912019

STUDY ON CALCULATION FOR WIDTH PARAMETER OF SURFACE SETTLEMENT TROUGH INDUCED BY SHIELD TUNNEL

doi: 10.13204/j.gyjz200912019
  • Received Date: 2009-06-08
  • Publish Date: 2009-12-20
  • The value of width parameter i of surface settlement trough induced by shield tunnel is related to tunnel radius R,tunnel axis depth h,and soil condition(internal friction angle of soil).The analyses of 22 actual values from 13 constructional cases show that value of i is linear with [R+htan〔45-/2〕].20 values of i/[R+htan〔45-/2〕] are in the range of [0.45,0.50].Only 2 values(0.43,0.51) are beyond but close to the bounds,generally within 10% difference.The values of i is linear with h,but their dispersion is great.The values of i/h are in the range of [0.37,0.66] for cohesive soil.The result shows that the contribution of relationship curve of i/R values with h/(2R) values obtained from exponential function fitting is better than that obtained from power function fitting,but the scope of empirical parameter range is large.Based on the above-mentioned results,new calculation method for i is put forward.This method is applicable in cohesive soil,and R,h and are taken into account.The possible error induced by large scope of empirical parameters range is avoided because of small parameter range in this method.
  • [2] 韩煊.隧道施工引起地层位移及建筑物变形预测的实用方法研究[D].西安:西安理工大学,2006.
    Peck R B.Deep Excavations and Tunneling in Soft Ground[C]//Stateof the Art Report.Proceeding of 7th International Conference on SoilMechanics and Foundation Engineering.Mexico City:1969:225-290.
    [3] Knothe S.Observations of Surface Movements Under Influence ofMining and Their Theoretical Interpretation[C]//Proceedings ofEuropean Congress on Ground Movement.Leeds,UK:University ofLeeds,1957:210-218.
    [4] 刘建航,候学渊.盾构法隧道[M].北京:中国铁道出版社,1991.
    [5] Clough G W,Schmidt B.Design and Performance of Excavations andTunnels in Soft Clay[G]//Brand E W,Brenner R P Soft ClayEngineering.New York:Elsevier Science Publishing Company,1981:569-634.
    [6] Attewell P B.Engineering Contract,Site Investigation and SurfaceMovements[G]∥Resendis D,Romo M P.Tunneling Works,Soft-Ground Tunneling Failure and Displacements.Rotterdam:Balkema,1981:5-12.
    [7] 陈秋宗.台北市潜盾隧道施工对地盘沉陷之影响[D].新竹:国立交通大学,1988.
    [8] Loganathan N,Poulos H G.Analytical Prediction for Tunneling-Induced Ground Movement in Clays[J].Journal of Geotechnical andGeoenvironmental Engineering,1998,124(9):846-856.
    [9] Atkinson J H,Potts D M.Subsidence Above Shallow Tunnels in SoftGround[J].Journal of Geotechnical Engineering,ASCE,1977,103(4):307-325.
    [10] Lee C J,Wu B R,Chiou S Y.Soil Movements Around a Tunnel inSoft Soils[C]//Proceedings of the National Science Council,Part A,Physical Science and Engineering.Taiwan,China:1999,23(2):235-247.
    [11] Attewell P B,Farmer I W.Ground Deformations Resulting fromShield Tunnelling in London Clay[J].Canadian GeotechnicalJournal,1974,11(3):380-395.
    [12] Rankin W J.Ground Movement Resulting from Urban Tunnelling:Predictions and Effects.Engineering Geology of UndergroundMovements[C]//Proceedings of the 23rd Annual Conference on theEngineering Group of the Geological Society.Nottingham,UK:Nottingham University,1988:79-92.
    [13] Mair R J,Taylor R N,Bracegirdie A.Subsurface Settlement ProfilesAbove Tunnels in Clays[J].Geotechnique,1993,43(2):315-320.
    [14] OReilly M P,New B M.Settlements Above Tunnels in the UnitedKingdom Their Magnitude and Prediction[C]∥Jones M J.Proceedings of Tunnelling82 Symposium.London:Institution ofMining and Metallurgy,1982:173-181.
    [15] 璩继立,葛修润.软土地区盾构隧道施工沉降槽的特征分析[J].工业建筑,2005,35(1):42-46.
    [16] 魏纲.盾构法隧道统一土体移动模型的建立[J].岩土工程学报,2007,29(4):554-559.
    [17] 朱伟,陈仁俊.盾构隧道施工技术现状及展望(第2讲)盾构隧道技术问题和施工管理[J].岩土工程界,2001,4(12):14-16,20.
    [18] 张书丰.地铁盾构隧道施工期地表沉降监测研究[D].南京:河海大学,2004.
    [19] 李园.盾构施工地层变形的三维数值模拟及试验研究[D].天津:天津大学,2004.
    [20] 魏纲,魏新江,龚慈,等.软土中盾构法隧道引起的土体移动计算研究[J].岩土力学,2006,27(6):995-999.
    [21] Lee K M,Ji H W,Shen C K,et al.Ground Response to theConstruction of Shanghai Metro Tunnel-Line 2[J].Soils andFoundations,1999,39(3):113-134.
    [22] 徐俊杰.土压平衡盾构施工引起的地表沉降分析[D].成都:西南交通大学,2004.
    [23] Deane A R,Bassett R H.The Heathrow Express Trial Tunnel[J].Geotechnical Engineering,1995,113(7):144-156.
    [24] Palmer J H,Belshaw D J.Deformations and Pore Pressures in theVicinity of a Precast,Segmented Concrete-Lined Tunnel in Clay[J].Canadian Geotechnical Journal,1980,17(2):174-184.
    [25] Yi X,Rowe R K,Lee K M.Observed and Calculated Pore Pressuresand Deformations Induced by an Earth Balance Shield[J].CanadianGeotechnical Journal,1993,30(3):476-490.
    [26] 易宏伟.盾构施工对土体扰动与地层移动影响的研究[D].上海:同济大学,1999.
    [27] 李曙光.EPB盾构法隧道施工引起的地表沉降分析与数值模拟[D].长沙:中南大学,2006.
    [28] 初达夫.北京地铁十号线三元桥亮马河站区间盾构旁穿建筑物地表沉降规律研究[D].北京:中国地质大学,2007.
    [29] 衡朝阳,滕延京,陈希泉.地铁盾构隧道周边建筑物地基基础变形控制研究[J].地下空间与工程学报,2006,2(8):1336-1340.
    [30] 刘纪峰,刘波,陶龙光.基于弹塑性分析的浅埋盾构隧道地表沉降控制[J].沈阳建筑大学学报:自然科学版,2009,25(1):28-33.
    [31] 张飞进.盾构施工穿越既有线地表沉降规律与施工参数优化[D].北京:北京工业大学,2006.
    [32] 郭玉海.盾构隧道穿越铁路沉降控制研究[J].市政技术,2004,22(增):247-251.
    [33] Cording E J,Hansmire W H.Displacement Around Soft GroundTunnels,General Report:Session IV,Tunnels in Soil[C]//Proceedings of the 5th Panamerican Congress on Soil Mechanics andFoundation Engineering.[s.l.]:1975:571-632.
  • Relative Articles

    [1]WANG Jian, PAN Hong, LUO Guanyong, CAO Hong. Research on Transversal Settlement Characteristics of Strata Caused by Large Diameter in Shield Tunneling Slurry Pressure Balance[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(4): 158-165. doi: 10.3724/j.gyjzG23073101
    [2]CHEN Jian, YANG Gongbiao, WANG Zhikui, XIAN Guijun, KONG Deao. Research and Applications of FRP in Large-Diameter Shield Tunnel Engineering[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 54-60. doi: 10.3724/j.gyjzG24032001
    [3]WANG Xiang, CHEN Fada, WU Xianguo, FENG Zongbao, CHEN Hongyu. Stability Evaluation of Working Faces of Shield Tunnels in Karst Based on Cloud Model and D-S Evidence Theory[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 65-72. doi: 10.13204/j.gyjzG22011206
    [4]LU Qingrui, JIN Xiuwei, LI Dongwei, CEHN Shijun, WANG Shuairu. Comparative Analysis on Ground Subsidence Above Entrances of Shield Tunnels by Horizontal Freezing[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(11): 50-54,49. doi: 10.13204/j.gyjzG22070507
    [5]LI Ting, JIANG Annan, ZHANG Fengrui, ZHONG Yue, XU Bo. Effects of Jointed Rock Masses on Stability of Shield Tunnels Under Tunnelling and Ground Loss Rates[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 29-37. doi: 10.13204/j.gyjzG21052114
    [6]CUI Yuandong, BIAN Rong, WANG Shuhong, XU Hui, JIANG Shouchao. ANALYSIS ON STRUCTURAL RESPONSES OF PREFABRICATED CABLE TUNNELS WITH DIFFERENT JOINTS IN UNEVEN SUBSIDENCE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 64-70,97. doi: 10.13204/j.gyjzG20102503
    [7]CHEN Zhengfa, ZHANG Jie, YAN Zhiguo, BIAN Minghui. STUDY OF WATER AND EARTH PRESSURE MODES ON SHIELD TUNNELS IN WATER-RICH DIORITE STRATA[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 25-30. doi: 10.13204/j.gyjzG21031806
    [8]LI Xue, WU Jiuqi, GENG Fengjuan, GENG Aopeng, ZHANG Yushen. CALCULATIONS OF LONGITUDINAL DEFORMATION FOR RIVER-CROSSING SHIELD TUNNELS INDUCED BY SCOUR IN DEEP CHANNEL SECTIONS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 6-10,38. doi: 10.13204/j.gyjzG20112306
    [9]Abdul Motalleb QAYTMAS, TIAN Yu, LU Dechun, DU Xiuli. INFLUENCE OF RELATIVE DENSITIES FOR SURROUNDING ROCKS ON STRATUM SUBSIDENCE DURING TUNNELLING[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 11-17. doi: 10.13204/j.gyjzG20072217
    [10]TAO Yu, LIANG Weiqiao, FANG Wujun. RESEARCH ON THE STABILITY OF UNDERCROSSED SUBWAY SHIELD TUNNEL[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(4): 66-70. doi: 10.13204/j.gyjz202004012
    [13]Hou Wei, Luo Wenlin, Han Xuan. RESEARCH ON PRACTICAL CALCULATION METHOD OF GROUND SUBSIDENCE CAUSED BY DRAWING GROUND WATER[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 90-94. doi: 10.13204/j.gyjz201502020
    [14]Shao Guoxin. THE DESIGN AND CONSTRUCTION OF FREEZING METHOD OF CONNECTED AISLE FOR THE METRO SHIELD TUNNELS IN NINGBO SOFT SOIL STRATUM[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(11): 148-152. doi: 10.13204/j.gyjz201311033
    [15]Liu Jifeng, Liu Bo, Zhang Huizhi. EXPERIMENTAL STUDY ON THE SHIELD TUNNELING-INDUCED SURFACE SETTLEMENT[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(3): 91-98. doi: 10.13204/j.gyjz201103018
    [16]Zhou Haiying, Chen Tingguo, Li Lixin. STUDY ON JOINT BENDING STIFFNESS AND INFLUENCING FACTORS OF METRO SHIELD TUNNELING LINING[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(7): 59-61,122. doi: 10.13204/j.gyjz201007016
    [17]Zhou Haiying, Chen Tingguo, Li Lixin. STUDY ON JOINT LOAD TEST OF METRO SHIELD TUNNELING LINING[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(4): 79-83. doi: 10.13204/j.gyjz201004018
    [18]Ma Baoguo, Luo Zhongtao, Wang Kai, Zou Dinghua, Wang Yingbin, Wang Xingang. THE MODEL OF CONCRETE DURABILITY FAILING WITH TIME-CALCULATION METHOD USED IN THE SERVICE-LIFE PREDICTION OF HILS[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 82-84,74. doi: 10.13204/j.gyjz200811020
    [19]Qu Jili, Ge Xiurun. ANALYSIS OF CHARACTERISTICS OF SETTLEMENT TROUGH INDUCED BY SHIELD CONSTRUCTION IN SOFT SOIL AREA[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(1): 42-46. doi: 10.13204/j.gyjz200501013
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0502.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 5.5 %FULLTEXT: 5.5 %META: 94.5 %META: 94.5 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 25.5 %其他: 25.5 %Malvern: 0.9 %Malvern: 0.9 %上海: 0.9 %上海: 0.9 %东莞: 0.9 %东莞: 0.9 %丹佛: 0.9 %丹佛: 0.9 %伦敦: 0.9 %伦敦: 0.9 %佛山: 0.9 %佛山: 0.9 %保定: 0.9 %保定: 0.9 %列克星敦: 0.9 %列克星敦: 0.9 %加利福尼亚州: 0.9 %加利福尼亚州: 0.9 %北京: 5.5 %北京: 5.5 %南宁: 0.9 %南宁: 0.9 %嘉兴: 0.9 %嘉兴: 0.9 %圣路易斯: 1.8 %圣路易斯: 1.8 %天津: 0.9 %天津: 0.9 %宜春: 0.9 %宜春: 0.9 %密蘇里城: 4.5 %密蘇里城: 4.5 %广州: 1.8 %广州: 1.8 %张家口: 3.6 %张家口: 3.6 %徐州: 2.7 %徐州: 2.7 %昆明: 0.9 %昆明: 0.9 %杭州: 5.5 %杭州: 5.5 %格里利: 0.9 %格里利: 0.9 %楚雄: 0.9 %楚雄: 0.9 %武汉: 5.5 %武汉: 5.5 %洛杉矶: 1.8 %洛杉矶: 1.8 %漯河: 1.8 %漯河: 1.8 %珠海: 0.9 %珠海: 0.9 %石家庄: 1.8 %石家庄: 1.8 %绍兴: 0.9 %绍兴: 0.9 %芒廷维尤: 8.2 %芒廷维尤: 8.2 %芝加哥: 2.7 %芝加哥: 2.7 %西宁: 1.8 %西宁: 1.8 %西安: 1.8 %西安: 1.8 %贵阳: 0.9 %贵阳: 0.9 %邯郸: 0.9 %邯郸: 0.9 %郑州: 0.9 %郑州: 0.9 %重庆: 0.9 %重庆: 0.9 %长沙: 1.8 %长沙: 1.8 %青岛: 0.9 %青岛: 0.9 %黄石: 0.9 %黄石: 0.9 %其他Malvern上海东莞丹佛伦敦佛山保定列克星敦加利福尼亚州北京南宁嘉兴圣路易斯天津宜春密蘇里城广州张家口徐州昆明杭州格里利楚雄武汉洛杉矶漯河珠海石家庄绍兴芒廷维尤芝加哥西宁西安贵阳邯郸郑州重庆长沙青岛黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (157) PDF downloads(193) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return