Meng Shaoping, Wang Guolin, Yuan Qin, Huang Shiping. EXPERIMENTS ON SHEAR BEHAVIOR OF PRESTRESSED CONCRETE BEAMS WITH DRAPED TENDONS:LONGITUDINAL REINFORCEMENT RATIO(A_s GROUP)[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 5-9. doi: 10.13204/j.gyjz200912002
Citation:
Meng Shaoping, Wang Guolin, Yuan Qin, Huang Shiping. EXPERIMENTS ON SHEAR BEHAVIOR OF PRESTRESSED CONCRETE BEAMS WITH DRAPED TENDONS:LONGITUDINAL REINFORCEMENT RATIO(A_s GROUP)[J]. INDUSTRIAL CONSTRUCTION , 2009, 39(12): 5-9. doi: 10.13204/j.gyjz200912002
Meng Shaoping, Wang Guolin, Yuan Qin, Huang Shiping. EXPERIMENTS ON SHEAR BEHAVIOR OF PRESTRESSED CONCRETE BEAMS WITH DRAPED TENDONS:LONGITUDINAL REINFORCEMENT RATIO(A_s GROUP)[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 5-9. doi: 10.13204/j.gyjz200912002
Citation:
Meng Shaoping, Wang Guolin, Yuan Qin, Huang Shiping. EXPERIMENTS ON SHEAR BEHAVIOR OF PRESTRESSED CONCRETE BEAMS WITH DRAPED TENDONS:LONGITUDINAL REINFORCEMENT RATIO(A_s GROUP)[J]. INDUSTRIAL CONSTRUCTION , 2009, 39(12): 5-9. doi: 10.13204/j.gyjz200912002
EXPERIMENTS ON SHEAR BEHAVIOR OF PRESTRESSED CONCRETE BEAMS WITH DRAPED TENDONS:LONGITUDINAL REINFORCEMENT RATIO(A_s GROUP)
1.
Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education,Southeast University,Nanjing 210096,China
Received Date: 2009-09-12
Publish Date:
2009-12-20
Abstract
Three PC beams with draped tendons and one RC beam were tested and the primary variable is the longitudinal reinforcement ratio .All the beams had a shear span to depth ratio,a/h_0,of 1.8.Several results were obtained: beams with both small a/h_0 and normal amount of were inclined to suffer a flexural-shear failure;the lower the ,the faster the damage of beams;there seems to be a critical longitudinal reinforcement ratio,_(crit),that is,if is lower than it,the arch action would weaken,or else the arch action would be significant.Besides,sectional design methods and modified strut-and-tie model(MSTM) were used to predict the beam shear strengths,and comparisons with test results indicate that sectional methods are not suitable for such predictions but MSTM not only gives accurate results,but also well account for the effect of the longitudinal reinforcement.
References
[2] MacGregror J G,Sozen MA,Siess C P.Effect of DrapedReinforcement on the Behavior of Prestressed Concrete Beams[J].Journal of the American Concrete Institute,Proceedings,1960,57(6):649-677.
ASCE-ACI Committee 426.The Shear Strength of ReinforcementConcrete Members[J].Journal of Structural Division,ASCE,1973,99(6):1091-1187.
[3] Walraven J C.Shear in Prestressed Concrete Members[M].A Stateof the Art Report,1987.
[4] 吕志涛.预应力混凝土梁的抗剪强度[M].南京:钢筋混凝土结构研究报告选集(2),1981.
[5] GB 500102002混凝土结构设计规范[S].
[6] ACI Committee 318.Building Code Requirements for StructuralConcrete(ACI 318-08)and Commentary(318R-08)[S].
[7] CSA Committee A23.3.Design of Concrete Structures(CSA A23.3-04)[S].
[8] Wang Guolin,Meng Shaoping.Modified Strut-and-Tie Model forPrestressed Concrete Deep Beams[J].Engineering Structures,2008,12(30):3489-3496.
[9] 王国林,孟少平,黄仕平.一种预测深受弯构件承载力的协调方法[J].建筑结构,2009,39(4):97-99.
Relative Articles
[1] XIE Qiang, SHAO Yongjian, ZHU Kaiji. Experimental Research on Seismic Performance of CFRP Reinforced Recycled Aggregate Concrete Composite Torsional Columns [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 118-129. doi: 10.3724/j.gyjzG23042605
[2] JIN Chenhua, WU Chang, PAN Zuanfeng, MENG Shaoping. Calculation of Shear Capacity of Shear Walls with Small Shear-Span Ratio Based on Equivalent Diagonal Web Truss-Arch Model [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(9): 111-118. doi: 10.13204/j.gyjzG22091505
[3] ALIFUJIANG Xiamuxi, AYIDENIGULI Duman, LIU Caijian. Experimental Study on Axial Compressive Behavior of Reinforced Recycled Aggregate Concrete-Filled Steel Tube Short Column [J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 28-34. doi: 10.13204/j.gyjzG22012008
[4] HE Changjie, LI Lu, HUANG Hu, LI Jianxin, YANG Yong. ANALYSIS OF ENGINEERING SCHEMES FOR PARTIALLY PREFABRICATED STEEL REINFORCED CONCRETE BEAMS [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 134-140. doi: 10.13204/j.gyjzG21020108
[5] QIN Yongjun, LI Xiangyang, CUI Zhuang, WANG Bo. RESEARCH ON SHEAR PERFORMANCES OF CONCRETE DEEP BEAMS MIXED WITH DESERT SAND WITHOUT WEB REINFORCEMENT [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(9): 98-105. doi: 10.13204/j.gyjzG20081505
[6] PI Zhengbo, WEI Qike, LAN Yongsen, LUO Wei, ZHANG Hao, WANG Shuqi. RESEARCH ON SHEAR AND BENDING PROPERTIES OF COMPOSITE REINFORCED CONCRETE SLABS WITH REINFORCED TRUSSES [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(6): 51-57. doi: 10.13204/j.gyjz202006009
[8] Cao Dafu, Zhou Min, Ge Wenjie, Yuan Shenfeng. STUDY OF THE SHEAR BEHAVIORS OF RC BEAMS AFTER FREEZE-THAW CYCLES [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 32-37. doi: 10.13204/j.gyjz201502008
[9] Chen Zongping, Wang Huanhuan, Xue Jianyang, Chen Yuliang. SHEAR PROPERTIES EXPERIMENT OF STEEL REINFORCED RECYCLED AGGREGATE CONCRETE BEAMS AFTER ELEVATED TEMPERATURES [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(11): 51-57. doi: 10.13204/j.gyjz2001411009
[10] Du Zhao-hua, Liu Li-xin, Fu Jun-fei. EXPERIMENTAL STUDY ON THE SHEAR BEHAVIOR OF RECYCLED AGGREGATE CONCRETE BEAMS [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(9): 66-70,78. doi: 10.13204/j.gyjz201209015
[11] Sun Xiaokai, Diao Bo, Ye Yinghua. FLEXURAL BEHAVIOR EXPERIMENTS OF ULTRA-HIGH PERFORMANCE CONCRETE BEAMS REINFORCED WITH STEEL BAR AND HYBRID-FIBER [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(11): 16-21. doi: 10.13204/j.gyjz201211004
[12] Chen Wei, Zhou Xuhong, Wu Fangbo, Huang Hailin, Xu Jing. EXPERIMENTAL STUDY ON BASIC MECHANICAL BEHAVIOR OF A NEW TYPE CONCRETE HORIZONTAL-HOLE HOLLOW BLOCK MASONRY [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(12): 98-101,115. doi: 10.13204/j.gyjz201112022
[13] Chen Lin, Zhao Ruirong, Zhou Yun. INFLUENCE OF VERTICAL LOAD ON SHEAR PERFORMANCE OF BUCKLING-RESTRAINED COMPOSITE STEEL PLATE SHEAR WALL [J]. INDUSTRIAL CONSTRUCTION, 2011, 41(10): 100-105. doi: 10.13204/j.gyjz201110024
[14] Liu Jiahui, Bai Juan, Liu Lixin. EXPERIMENTAL STUDY ON SHEAR BEHAVIOR OF CONCRETE BEAMS REINFORCED BY HOT ROLLED RIBBED BARS OF FINE GRAINS [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(10): 106-110. doi: 10.13204/j.gyjz201010024
[15] Wang Guolin, Meng Shaoping, Huang Shiping, Yuan Qin. EXPERIMENTS ON SHEAR BEHAVIOR OF PRESTRESSED CONCRETE BEAMS:ANGLES OF PRESTRESSING TENDONS(θ GROUP) [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(12): 10-13. doi: 10.13204/j.gyjz200912003
[16] Qu Wenjun, Tan Yanfang. COORDINATION BETWEEN THE MINIMUM REINFORCEMENT RATIO AND CRACK CONTROL OF CONCRETE AXIAL TENSION MEMBERS [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(12): 65-68. doi: 10.13204/j.gyjz200812017
[17] Dign Xiaoyan, Wang Tiecheng. EXPERIMENT ON SHEAR BEHAVIOR OF L-SHAPED SECTION BROAD-LIMB COLUMNS SUBJECTED TO LOW CYCLIC LOADING [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(4): 36-40. doi: 10.13204/j.gyjz200804010
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 2025-05 0 2 4 6 8
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 21.3 % FULLTEXT : 21.3 % META : 78.7 % META : 78.7 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 26.7 % 其他 : 26.7 % China : 6.7 % China : 6.7 % 北京 : 16.0 % 北京 : 16.0 % 张家口 : 4.0 % 张家口 : 4.0 % 芒廷维尤 : 32.0 % 芒廷维尤 : 32.0 % 西宁 : 6.7 % 西宁 : 6.7 % 郑州 : 4.0 % 郑州 : 4.0 % 重庆 : 1.3 % 重庆 : 1.3 % 阳泉 : 2.7 % 阳泉 : 2.7 % 其他 China 北京 张家口 芒廷维尤 西宁 郑州 重庆 阳泉