Yang Qiwei, Liang Xingwen, Jiang Jian. RESEARCH ON DISPLACEMENT-BASED SEISMIC DESIGN METHOD OF REINFORCED CONCRETE FRAME-SHEAR WALL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(2): 1-5. doi: 10.13204/j.gyjz200702001
Citation:
Yang Qiwei, Liang Xingwen, Jiang Jian. RESEARCH ON DISPLACEMENT-BASED SEISMIC DESIGN METHOD OF REINFORCED CONCRETE FRAME-SHEAR WALL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION , 2007, 37(2): 1-5. doi: 10.13204/j.gyjz200702001
Yang Qiwei, Liang Xingwen, Jiang Jian. RESEARCH ON DISPLACEMENT-BASED SEISMIC DESIGN METHOD OF REINFORCED CONCRETE FRAME-SHEAR WALL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(2): 1-5. doi: 10.13204/j.gyjz200702001
Citation:
Yang Qiwei, Liang Xingwen, Jiang Jian. RESEARCH ON DISPLACEMENT-BASED SEISMIC DESIGN METHOD OF REINFORCED CONCRETE FRAME-SHEAR WALL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION , 2007, 37(2): 1-5. doi: 10.13204/j.gyjz200702001
RESEARCH ON DISPLACEMENT-BASED SEISMIC DESIGN METHOD OF REINFORCED CONCRETE FRAME-SHEAR WALL STRUCTURES
1.
1 North University of Technology Beijing 100041;
2.
2 Xi'an University of Architecture and Technology Xi'an 710055;
3.
3 Tongji University Shanghai 200092
Received Date: 2006-03-27
Publish Date:
2007-02-20
Abstract
According to the characteristic of reinforced concrete frame-shear wall structure,the seismic performance level is divided into three levels: serviceability, life-safety, and collapse prevention. The three levels are qualified with storey drift ratios. Applying the inverted triangular distribution of lateral force to the cantilever column of constant section, and the displaced shape of the column is regarded as the initial mode of lateral displacement. For serviceability, the displaced shape, which storey drift ratio of the floor level at point of contraflexure on the initial mode of lateral displacement is equal to limit of the storey drift ratio, may be seen as target displacement mode. Based on the target displacement mode of frame-shear wall structure in the serviceability performance level, the equivalent parameter can be obtained. Thus, the base shear V_b and horizontal earthquake force F_i at each floor of the building can be determined. Finally, the designed structure is analyzed with nonlinear static analysis method and the design is adjusted by the pushover analysis result until it is satisfied.
References
Vision 2000 Committee. Performance-Based Engineering of Building.Committee of the Structure Engineer Association of California[M].Oakland,Calf:Wiley Inc,1995.
Priestley M J N. Performance-Based Seismic Design[A].Auckland,New Zealand,2000.2831.
罗文斌,钱稼茹. 钢筋混凝土框架结构基于位移的抗震设计[J].土木工程学报,2003,(05):22-29.
梁兴文,黄雅捷,杨其伟. 钢筋混凝土框架结构基于位移的抗震设计方法研究[J].土木工程学报,2005,(09):53-60.
Liang Xingwen,Deng Mingke,Li Bo. Displacement-Based Seismic Design of Shear Wall Structure in Tall Buildings[A].香港,2005.159-164.
Medhekar M S. Displacement-Based Seismic Design of BuildingsTheory[J].Engineering Structures,2000,(3MARCH):201-209.
Alois So mmer. Seismic Behavior of Asymmertric RC Wall Buildings:Principles and New Deformation-Based Design Method[J].Earthquake Engineering Structural Dynamics,2001.1439-1462.
GB 50011-2001.建筑抗震设计规范[S].
梁兴文,史庆轩,童岳生. 钢筋混凝土结构设计[M].北京:科学技术文献出版社,1999.312-316.
Miranda E,Garcia J G. Evaluation of Approximate Methods to Estimate Maximum Inelastic Displacement Demands[J].Earthquake Engineering Structural Dynamics,2002.539-560.
Relative Articles
[1] BAI Zhengxian, CUI Hu, JIANG Ziqin, SHEN Cunjie, SU Lei, ZHANG Wenying. Influence of Different Parameters on Hysteretic Behavior of Corrugated Steel Plate Wall [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 24-31,103. doi: 10.13204/j.gyjzG21122105
[2] SHEN Haiying, WU Ruomin, WANG Haishan, TONG Jingzhong, TONG Genshu. Research on Effects of Corrugation Parameters on Shear Capacity of Corrugated Steel Plate Shear Walls [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 19-23,38. doi: 10.13204/j.gyjzG22052204
[3] PANG Rui, WANG Yixiao, XU Zhu, WANG Lu, LEI Hongbing. RESEARCH ON SEISMIC PERFORMANCES OF PREFABRICATED SRCT SHEAR WALL STRUCTURE WITH HORIZONTAL CONNECTIONS [J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 35-41. doi: 10.13204/j.gyjzG20032209
[4] LIU Chengqing, LIAO Wenxiang, FANG Dengjia, DENG Youyi. LATERAL DISPLACEMENT RESISTANCE AND ELASTIC-PLASTIC ANALYSIS OF DIAGRID CORE-TUBE STRUCTURE IN HIGH-RISE BUILDINGS [J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 57-64. doi: 10.13204/j.gyjzG20010811
[5] Li Jin, Ma Yancong, Li Qingning, Jiang Weishan. THE PSEUDO DYNAMIC TESTS RESEARCH ON PRECAST MONOLITHIC FLOOR-FRAME SHEAR WALL STRUCTURE WITH X HORIZONTAL BRACES [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(8): 78-85. doi: 10.13204/j.gyjz201508015
[6] Liu Lu, Wu Ziyan, Sun Hongbin. A METHOD FOR INFILLED RC FRAMES SEISMIC TARGET PERFORMANCE LEVELS [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(4): 67-71. doi: 10.13204/j.gyjz201504012
[7] Yuan Changlu Hao Jiping Fang Chen, . SEISMIC BEHAVIOR OF STEEL FRAME-STEEL PLATE SHEAR WALL SYSTEMS [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(7): 142-147. doi: 10.13204/j.gyjz201507029
[8] Dai Huijuan, Bai Guoliang, Wang Bo, Xue Feng, Li Hongxing. STUDY OF DISPLACEMENT-BASED DESIGN METHOD OF AIR-COOLED CONDENSER STRUCTURE CONSIDERING EQUIPMENT SAFETY [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(2): 125-130. doi: 10.13204/j.gyjz201502026
[9] Wang Zejun, Kong Lingcang, Ren Jiafu. STUDY ON EFFECT OF GROUND WALL THICKNESS ON SEISMIC PERFORMANCE OF FRAME-SUPPORTED SHEAR WALL STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(07): 42-45.
[10] Yuan Kang, Li Yingmin, Zhang Songbai. STUDY OF UNIDIRECTIONAL WALL FRAMES' INFLUENCE ON THE SEISMIC PERFORMANCE OF SHEAR WALL STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(07): 37-41.
[11] Li Kun, Shi Qingxuan. RESEARCH ON PERFORMANCE INDEX LIMIT VALUE OF REINFORCED CONCRETE SHEAR WALL [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(2): 24-28. doi: 10.13204/j.gyjz201302005
[12] Zhong Xiaoping, Jin Weiliang. FRAMEWORK OF DESIGN THEORY OF WHOLE LIFE-CYCLE PERFORMANCE IN CONCRETE STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 1-9. doi: 10.13204/j.gyjz201308001
[13] Han Jun, Li Yingmin, Pan Yi, Chen Weixian. RULE OF ELASTO-PLASTIC TORSIONAL RESPONSE OF THE ECCENTRIC FRAME-SHEAR WALL STRUCTURE UNDER EARTHQUAKE ACTION [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(3): 1-6,11. doi: 10.13204/j.gyjz201203001
[14] Yin Long-xing, Bai Guo-liang, Li Hong-xing, Li Xiao-wen. STUDY ON EXPERIMENT AND DISPLACEMENT-BASED DESIGN METHOD OF THE MAIN BUILDING FOR THERMAL POWER PLANT [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(9): 56-60. doi: 10.13204/j.gyjz201209013
[15] Liu Lin, Bai Guoliang, Li Xiaowen, Li Hongxing, Zhao Chunlian. DISPLACEMENT-BASED SEISMIC DESIGN METHOD OF RC FRAMES [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(5): 1-5. doi: 10.13204/j.gyjz200905001
[16] Jiang Huanjun, Zheng Jianbo, Zhang Hua. STATE OF THE ART OF DISPLACEMENT-BASED SEISMIC DESIGN [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(7): 1-5,15. doi: 10.13204/j.gyjz200807001
[17] Li Shuchun, Diao Bo, Su Youpo, Zhang Jing. EXPERIMENT ON ANTI-SEISMIC BEHAVIOR OF LIGHT GAUGE STEEL REINFORCED CONCRETE SHEAR WALL [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(2): 89-92. doi: 10.13204/j.gyjz200702022
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 2 4 6 8
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 16.1 % FULLTEXT : 16.1 % META : 83.9 % META : 83.9 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 14.0 % 其他 : 14.0 % China : 3.2 % China : 3.2 % 北京 : 9.7 % 北京 : 9.7 % 台州 : 1.1 % 台州 : 1.1 % 天津 : 1.1 % 天津 : 1.1 % 宜春 : 2.2 % 宜春 : 2.2 % 常州 : 1.1 % 常州 : 1.1 % 张家口 : 1.1 % 张家口 : 1.1 % 新乡 : 2.2 % 新乡 : 2.2 % 杭州 : 4.3 % 杭州 : 4.3 % 格兰特县 : 1.1 % 格兰特县 : 1.1 % 湖州 : 5.4 % 湖州 : 5.4 % 石家庄 : 1.1 % 石家庄 : 1.1 % 芒廷维尤 : 22.6 % 芒廷维尤 : 22.6 % 苏州 : 2.2 % 苏州 : 2.2 % 衡阳 : 1.1 % 衡阳 : 1.1 % 西宁 : 22.6 % 西宁 : 22.6 % 重庆 : 1.1 % 重庆 : 1.1 % 长沙 : 2.2 % 长沙 : 2.2 % 阳泉 : 1.1 % 阳泉 : 1.1 % 其他 China 北京 台州 天津 宜春 常州 张家口 新乡 杭州 格兰特县 湖州 石家庄 芒廷维尤 苏州 衡阳 西宁 重庆 长沙 阳泉