Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Sun Lianhong, Ma Zhibin, Hao Shengqi. THE LINKS DRAWN ATTENTION DURING DESIGN OF THE FOUNDATION FOR A MILL BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(9): 4-6. doi: 10.13204/j.gyjz200809002
Citation: Si Bingjun, Sun Zhiguo, Ai Qinghua. APPLICATION OF SOLID65 ELEMENT IN THE FINITE ELEMENT ANALYSIS OF CONCRETE STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(1): 87-92,81. doi: 10.13204/j.gyjz200701022

APPLICATION OF SOLID65 ELEMENT IN THE FINITE ELEMENT ANALYSIS OF CONCRETE STRUCTURES

doi: 10.13204/j.gyjz200701022
  • Received Date: 2006-02-21
  • Publish Date: 2007-01-20
  • Solid65 element is defined for concrete material specially in the ANSYS software.The research results in analysis of RC structures,steel-concrete composite structures and FRP-strengthened concrete structures by using Solid65 element are reviewed.The methods of how to use this element and some matters needing attention are summarized and two typical examples are provided.The limitations in the analysis of concrete structures by using this element and the aspects which should be further researched in the future are pointed out in the end of the paper.
  • ANSYS Theory Manual 5.7,2001[M].ANSYSInc,2001.
    ANSYS User's Manual for Revision 5.7[M].ANSYSInc,2001.
    郝文化,叶裕明,沈火明,肖新标. ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.
    Barbosa A F,Ribeiro G O. Analysis of Reinforced Concrete Structures Using ANSYS Nonlinear Concrete Model[A].Barcelona,Spain,1998.
    Xiao R Y,O' Flahcrty T. Finite-element Analysis of Tested Concrete Connections[J].Computers Structures,2000,(1-3):247-255.
    Farming P. Nonlinear Models of Reinforced and Post-tensioned Concrete Beams[J].Electronic Journal of Structural Engineering,2001,(02):111-119.
    Padmarajaiah S K,Ramaswamy A. A Finite Element Assessment of Flexural Strength of Prestressed Concrete Beams with Fiber Reinforcement[J].Cement and Concrete Composites,2002,(02):229-241.
    Erduran E,Yakut A. Drift Based Damage Functions for Reinforced Concrete Columns[J].Computers Structures,2004,(2-3):121-130.
    De Nardin S,Almeida Filho F M,Oliveira Filho J. Non-Linear Analisis of the Bond Strength Behavior on the Steel-Concrete Interface by Numerical Models and Pull-Out Tests[M].New York,2005.20-24.
    董宏英. 带暗支撑双肢剪力墙抗震性能试验及设计理论研究[D].北京:北京工业大学,2002.
    沈殷,李国平,陈艾荣. 体外预应力混凝土梁的非线性有限元分析[J].同济大学学报(自然科学版),2003,(07):803-807.
    张国军. 大型火力发电厂高强混凝土框架柱的抗震性能研究[D].西安:西安建筑科技大学,2003.
    黄丽蒂,李惠. 耗能低剪力墙的非线性有限元全过程分析[J].哈尔滨工业大学学报,2004(11):1456-1459.
    谢剑,朱礼敏,戴自强. 混凝土夹芯双向板的夹层板理论分析和有限元分析[J].土木工程学报,2005,(07):39-44.
    曹万林,黄选明,宋文勇. 带交叉钢筋异形截面短柱抗震性能试验研究及非线性分析[J].建筑结构学报,2005,(03):30-37.
    赵红梅. 钢梁-钢骨混凝土柱节点的非线性有限元分析[D].北京:北京工业大学,2002.
    杨勇. 型钢混凝土粘结滑移基本理论及应用研究[D].西安:西安建筑科技大学,2003.
    石永久,王元清,陈宏. 钢-混凝土组合扁梁受力性能的有限元分析[J].中国矿业大学学报,2004,(04):417-420.
    汤文锋,王毅红,史耀华. 新型钢管混凝土节点的非线性有限元分析[J].长安大学学报(自然科学版),2004,(05):60-63.
    梅力彪,周云,阴毅. 穿心暗牛腿钢管混凝土柱单梁节点空间非线性有限元分析[J].工业建筑,2004,(09):81-83.
    Damian K,Thomas M,Solomon Y. Finite Element Modeling of Reinforced Concrete Structures Strengthened with FRP Laminates[R].Report for Oregon Department of Transportation,Salem,2001.
    Jia Minglei. Finite Element Modeling of Reinforced Concrete Beams Strengthened with FRP Composite Sheets[D].University of Alabama in Huntsville,2003.
    Chansawant K. Nonlinear Finite Analysis of Reinforced Concrete Structures Strengthened with FRP Laminates[D].Oregon State University,Corvallis,Oregon,2003.
    Santhakumar R,Chandrasekaran E,Dhanaraj R. Analysis of Retrofitted Reinforced Concrete Shear Beams using Carbon Fiber Composites[J].Electronic Journal of Structural Engineering,2004,(04):66-74.
    Li Guoqiang,Kidane S,Pang S S. Investigation into FRP Repaired RC Colunns[J].Computers Structures,2003,(01):83-89.
    陆新征,冯鹏,叶列平. FRP布约束混凝土方柱轴心受压性能的有限元分析[J].土木工程学报,2003,(02):46-51.
    周毅雷. 碳纤维(CFRP)加固钢筋混凝土梁的斜截面受剪承载力试验研究[D].南京:东南大学,2003.
    王小荣. 碳纤维布加固钢筋混凝土梁的数值分析[D].重庆:重庆大学,2003.
    肖建庄,龙海燕,石雪飞. 纤维布加固高轴压混凝土柱抗震性能[J].同济大学学报(自然科学版),2004,(08):990-995..
    张子潇,叶列平,陆新征. U型FRP加固钢筋混凝土梁受剪剥离性能的有限元分析[J].工程力学,2005,(04):155-162.
    江见鲸,陆新征,叶列平. 混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    周岑,孙利民. 钢筋混凝土结构弹性分析在ANSYS中的实现[A].云南昆明,2002.
    Bangash M Y H. Concrete and Concrete Structure:Numerical Modeling and Applications[M].Elsevier Science Publishers Ltd.London.England,1989.
    Huyse L,Hemmaty Y,Vandewallc L. Finite Element Modeling of Fiber Reinforced Concrete Beams[A].Pittsburgh,Pennsylvania,1994.
    Hemmaty Y. Modeling of Shear Force Transferred Between Cracks in Reinforced and Fiber Reinforced Concrete Structures[A].Pittsburgh,Pennsylvania,1998.
    Barzegar,Maddipudi,Srinivas. Three-Dimensional Modeling of Concrete Structures.1:Plain Concrete[J].Journal of Structural Engineering,1997,(10):1339-1346.
    Isenberg J. Finite Element Analysis of Reinforced Concrete Structures Ⅱ[M].ASCE,New York,NY,1993.
    Shah S P,Swartz S E,Ouyang C. Fracture Mechanics of Concrete[M].New York:John Wiley and Sons,Inc,1995.
    陆新征,江见鲸. 用ANSYS Solid65单元分析混凝土组合构件复杂应力[J].建筑结构,2003,(06):22-24.
    于天来,丛欣建. 钢筋混凝土梁弹塑性问题的计算机仿真分析[J].东北林业大学学报,2004(04):56-57.
    Zhou S,Rizos D C,Petrou M F. Effects of Superstructure Flexibility on Strength of Reinforced Concrete Bridge Decks[J].Computers Structures,2004,(01):13-23.
    刘涛,杨凤鹏. 精通ANSYS[M].北京:清华大学出版社,2002.
    杜拱辰,陶学康. 部分预应力混凝土无粘结筋的极限应力的研究[J].建筑结构学报,1985,(06):2-13.
  • Relative Articles

    [1]GUO Zhong, SONG Erxiang, LIN Shijie, LIU Guanglei, XU Yuqi, FU Hao, TONG Ximing, JIAO Gongqi. Numerical Analysis for Bearing Characteristics of Large-Equipment Hoisting Foundation[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 137-144,214. doi: 10.13204/j.gyjzg2022050907
    [2]JIANG Yi, WANG Gang, REN Xiaoguang, YANG Jingming, HU Junjie. Case Study of Karst Foundation Treatment for a Foundation Pit Project in Shenzhen[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(7): 204-207. doi: 10.13204/j.gyjzg21043008
    [3]JIANG Qinquan, GU Renguo, DENG Lei, FANG Yingguang. Experiment and Analysis of Filling Degrees in Foundation of Immersed Tube Tunnels Treated by the Sand Flow Method[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 24-28. doi: 10.13204/j.gyjzG21062306
    [4]LI Tianbao, XU Jiapei, LIU Kaifu. EFFECT OF RIGID PILES ON BEARING PROPERTIES OF COMPOSITE FOUNDATION WITH GEOGRID-REINFORCED CUSHIONS SUPPORTED WITH PILES SUBJECTED TO CYCLIC LOADS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(11): 137-142. doi: 10.13204/j.gyjzG20112307
    [5]CHEN Tianlei, LI Xudong, GAO Yuguang. EXPERIMENTAL STUDY OF TREATMENT FOR DEEP THICKNESS SELF-WEIGHT COLLAPSIBLE LOESS FOUNDATION WITH TWO-WAY SOIL DISPLACEMENT SCREW PILES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(6): 1-5,28. doi: 10.13204/j.gyjz202006001
    [6]Li Shiyang, Zeng Changxian, Li Yifan, Shao Dezhi, Li Bingyu. COMPARISON OF FOUNDATION IMPROVEMENT EFFECT OF STRENGTHENING AN EXPRESS RAILWAY EMBANKMENT FOUNDATION WITH A SAND LAYER OVER A MUD LAYER BY DIFFERENT METHODS[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(12): 88-94. doi: 10.13204/j.gyjz2001412015
    [7]Chen Zhongqing, Xu Chao, Ye Guanbao, Lu Sheng, Li Junshi. FIELD EVALUATION OF DYNAMIC COMPACTION ON SILT FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(4): 106-110. doi: 10.13204/j.gyjz201304022
    [8]Chen Fuquan, Cao Qijun. MECHANISM AND DESIGN METHOD OF GROUND IMPROVEMENT BY RESONANCE COMPACTION METHOD[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(6): 117-121. doi: 10.13204/j.gyjz201206025
    [9]Qiang Xiaojun, Zhang Changsheng, Liu Feng. FIELD TEST AND ANALYSIS OF REINFORCED PILE- SUPPORTED FOUNDATION IN LARGE AREA OF SOFT GROUND[J]. INDUSTRIAL CONSTRUCTION, 2012, 42(4): 95-98. doi: 10.13204/j.gyjz201204020
    [10]Chen Dachuan, Tang Lifei, Guo Jiebiao. ANALYSIS AND TREATMENT OF AN UNEVEN SETTLEMENT ACCIDENT OF A RESIDENTIAL BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(4): 136-139. doi: 10.13204/j.gyjz201104029
    [11]Gao Youbin, Liu Hanlong, Wang Bo, Xu Shilong. EXPERIMENTAL RESEARCH ON HIGH VACUUM DENSIFICATION METHOD TO REINFORCE SATURATED DREDGER FILL FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(8): 64-68. doi: 10.13204/j.gyjz201108017
    [12]Peng Shuguang, Lian Feng. EXPERIMENTAL STUDY ON BEARING MECHANISM OF PILE-NET COMPOSITE FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(6): 109-114. doi: 10.13204/j.gyjz201106023
    [13]LüWenzhi, Li Chunzhi, Yu Jianlin, Liu Chao. STUDY ON THE SETTLEMENT LAW OF THE COMPOSITE GROUND UNDER A FLEXIBLE FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(9): 58-65,57. doi: 10.13204/j.gyjz201009016
    [14]Zhan Jinlin, Shui Weihou, He Lijun, Cheng Xiaocheng. 12 000 kN·m ENERGY DYNAMIC COMPACTION EXPERIMENT FOR COLLAPSIBLE LOESS[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(6): 93-96. doi: 10.13204/j.gyjz201006021
    [15]Zhan Jinlin, Shui Weihou, He Lijun, Cheng Xiaocheng. EXPERIMENTAL STUDY ON TREATMENT OF THICK GRAVEL SOIL FOR MARINE RECLAMATION LAND USING DYNAMIC COMPACTION OF 18000 kN·m[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(4): 96-99. doi: 10.13204/j.gyjz201004021
    [16]Ren Wenyuan, Zhang Aijun, Xie Dingyi. RESEARCH ON THE AFTER-WORK SHALLOW REINFORCEMENT OPTIMIZATION TECHNOLOGY OF GRANULAR PILE COMPOSITE FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(11): 88-92. doi: 10.13204/j.gyjz201011022
    [17]Bai Feng. DISCUSSION ON ASEISMIC CONCEPTUAL DISIGN OF MIDDLE AND PRIMARY SCHOOLS' BUILDINGS IN CHINA FOR PREVETING COLLAPSE[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(1): 42-46. doi: 10.13204/j.gyjz200901008
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.510
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.3 %FULLTEXT: 27.3 %META: 72.7 %META: 72.7 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 26.0 %其他: 26.0 %其他: 11.2 %其他: 11.2 %Central District: 1.2 %Central District: 1.2 %India: 2.1 %India: 2.1 %Italy: 0.8 %Italy: 0.8 %Parma: 0.4 %Parma: 0.4 %Taiwan, China: 1.2 %Taiwan, China: 1.2 %[]: 7.9 %[]: 7.9 %中山: 0.4 %中山: 0.4 %休斯敦: 2.5 %休斯敦: 2.5 %八打雁: 1.2 %八打雁: 1.2 %北京: 2.5 %北京: 2.5 %卡塔赫纳: 3.7 %卡塔赫纳: 3.7 %台州: 0.4 %台州: 0.4 %嘉兴: 0.4 %嘉兴: 0.4 %图文巴: 1.2 %图文巴: 1.2 %圣保罗: 1.2 %圣保罗: 1.2 %张家口: 1.2 %张家口: 1.2 %拉合尔: 1.2 %拉合尔: 1.2 %深圳: 0.4 %深圳: 0.4 %温莎: 2.5 %温莎: 2.5 %湖州: 0.4 %湖州: 0.4 %漯河: 0.8 %漯河: 0.8 %琴斯托霍瓦: 1.2 %琴斯托霍瓦: 1.2 %芒廷维尤: 16.5 %芒廷维尤: 16.5 %芝加哥: 1.2 %芝加哥: 1.2 %苏州: 0.4 %苏州: 0.4 %衢州: 0.4 %衢州: 0.4 %西宁: 7.0 %西宁: 7.0 %重庆: 0.4 %重庆: 0.4 %长春: 0.4 %长春: 0.4 %阿萨姆邦: 0.4 %阿萨姆邦: 0.4 %马格朗: 0.8 %马格朗: 0.8 %其他其他Central DistrictIndiaItalyParmaTaiwan, China[]中山休斯敦八打雁北京卡塔赫纳台州嘉兴图文巴圣保罗张家口拉合尔深圳温莎湖州漯河琴斯托霍瓦芒廷维尤芝加哥苏州衢州西宁重庆长春阿萨姆邦马格朗

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (223) PDF downloads(188) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return