Chen Yunmin, Chen Renpeng, Huang Haidan. DEFINITION OF RELATIVE RIGIDITY AND PROPER RAFT THICKNESS OF PILE-RAFT FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(5): 1-4,23. doi: 10.13204/j.gyjz200505001
Citation:
Chen Yunmin, Chen Renpeng, Huang Haidan. DEFINITION OF RELATIVE RIGIDITY AND PROPER RAFT THICKNESS OF PILE-RAFT FOUNDATION[J]. INDUSTRIAL CONSTRUCTION , 2005, 35(5): 1-4,23. doi: 10.13204/j.gyjz200505001
Chen Yunmin, Chen Renpeng, Huang Haidan. DEFINITION OF RELATIVE RIGIDITY AND PROPER RAFT THICKNESS OF PILE-RAFT FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(5): 1-4,23. doi: 10.13204/j.gyjz200505001
Citation:
Chen Yunmin, Chen Renpeng, Huang Haidan. DEFINITION OF RELATIVE RIGIDITY AND PROPER RAFT THICKNESS OF PILE-RAFT FOUNDATION[J]. INDUSTRIAL CONSTRUCTION , 2005, 35(5): 1-4,23. doi: 10.13204/j.gyjz200505001
DEFINITION OF RELATIVE RIGIDITY AND PROPER RAFT THICKNESS OF PILE-RAFT FOUNDATION
1.
1. Institute of Geotechnical Engineering,Zhejiang University Hangzhou 310027;
2.
2. Shanghai Branch,Hebei Provincial Architectural Design &Research Institute Shanghai 200125
Received Date: 2004-01-28
Publish Date:
2005-05-20
Abstract
A new type of relative rigidity expression of pile- raft foundation is proposed using pile- raft foundation's simplified analytic method with interaction taken into account, it is analyzed that the effect of pile-raft foundation's relative rigidity on settlement of the raft, internal forces and reaction distribution of pile head; the relationship between the relative rigidity and length/width ratio of the raft is also researched. A rational formula of the raft thickness is put forward according to giving full play to the bearing capacity of the piles. Finally the rationality of the formula and the feasibility of engineering use are verified by two examples.
References
Meyerhof G G. Some Recent Foundation Research and Its Application to Design. Structure, 1953(31): 151 ~ 167;
[2] Poulos H G. Pile Behavior -Theory and Application. Geotechnique,1989,39(3) :365 ~ 415;
[3] 董建国,赵锡宏.高层建筑地基基础-共同作用理论与实践.上海:同济大学出版社,1997;
[4] 宰金珉,宰金璋.高层建筑基础分析与设计--土与建筑物共同作用理论与应用.北京:中国建筑工业出版社,1994;
[5] 宰金珉.高层建筑地基与基础设计中的几个问题.见:21世纪高层建筑基础工程学术会议论文集.北京:中国建筑工业出版社,2000;
[6] 刘金砺,黄强,李华,等.竖向荷载下群桩变形性状及沉降计算.岩土工程学报,1995,17(6):1~13;
[7] 陈云敏,陈仁朋,凌道盛.考虑相互作用的桩筏基础简化分析法.岩土工程学报,2001,23(6):686~691;
[8] 凌道盛,陈云敏,丁皓江.任意基础板的有限元分析.岩土工程学报,2000,22(4):450~455;
[9] Sommer H, Wittmann P, Ripper P. Piled Raft Foundation of a Tall Building in Frankfurt Clay. In: Proc. 11 Int. Conf. ON SMFE, 1985,4:2 253 ~ 2 257;
[10] 陈仁朋,凌道盛,陈云敏.群桩基础沉降计算中的几个问题.土木工程学报,2003,36(10):89~94
Relative Articles
[1] LIU Yan, SU Yanqin, DENG Peng, WEI Dingfeng, LUN Hengxuan, FENG Hao. Study on Bond Properties Between Steel Bars and Ceramsite Concrete Under Sustained Loads and Chloride Corrosion [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(3): 183-190. doi: 10.13204/j.gyjzG21071908
[2] LI Linru, ZHANG Dong, SHI Chunhua. Research on Pattern Evolution of Traditionally Rural Settlements Adjacent to Waters in Yiluo River Basin [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 104-110. doi: 10.13204/j.gyjzG21092613
[3] XIONG Ye, DING Yang, CHA Lyuying, CHEN Zizi, LIU Yangwu. Dynamic Characteristics of Axial Flow Compressor Foundations Considering Interaction of Foundation, Pile Foundations and Superstructures [J]. INDUSTRIAL CONSTRUCTION, 2022, 52(6): 150-155,149. doi: 10.13204/j.gyjzG21052007
[5] Huang Wei, Chen Junying, Liu Jieyu, Zhang Chenghua. STUDY ON FAILURE MODES OF FUNDAMENTAL ELEMENT OF ECOLOGICAL COMPOSITE WALL [J]. INDUSTRIAL CONSTRUCTION, 2014, 44(03): 68-73. doi: 10.13204/j.gyjz201403016
[6] Du Yongfeng, Li Zhuohang, Li Hui. STUDY ON STRUCTURAL DAMAGE IDENTIFICATION BASED ON THE RELATIVE ELEMENT STIFFNESS COEFFICIENT [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(8): 39-42. doi: 10.13204/j.gyjz201308008
[7] He Chunbao, Huang Juqing. ANALYSIS OF INTERACTION AMONG ADJACENT RECTANGULAR FOUNDATIONS AND GROUND [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(10): 71-77. doi: 10.13204/j.gyjz201310016
[8] Liu Penghui. STUDY ON THE CHARACTERISTICS OF DIFFERENTIAL SETTLEMENT IN INTEGRAL RAFT CONNECTION BETWEEN MAIN BUILDING WITH PODIUMS [J]. INDUSTRIAL CONSTRUCTION, 2012, 42(11): 87-91. doi: 10.13204/j.gyjz201211019
[9] LüWenzhi, Li Chunzhi, Yu Jianlin, Liu Chao. STUDY ON THE SETTLEMENT LAW OF THE COMPOSITE GROUND UNDER A FLEXIBLE FOUNDATION [J]. INDUSTRIAL CONSTRUCTION, 2010, 40(9): 58-65,57. doi: 10.13204/j.gyjz201009016
[10] LüWenzhi, Yu Jianlin, Zheng Wei, Gong Xiaonan, Jing Zijing. STUDY OF ANALYTIC SOLUTION OF COMPOSITE GROUND UNDER FLEXIBLE FOUNDATION BASED ON SUPER-SUB STRUCTURE INTERACTION [J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 77-83. doi: 10.13204/j.gyjz200904018
[11] Wang Tianfeng, Ding Zhichao, Wang Li, Ying XiaoLin. ANALYSIS OF INTEGRAL COLLAPSE OF A REINFORCED CONCRETE SILO [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(4): 116-118. doi: 10.13204/j.gyjz200804029
[12] Cui Chunyi, Luan Maotian, Yang Qing. NUMERICAL ANALYSIS OF ENTIRE INTERACTIVE SYSTEM OF RAFT FOUNDATION CONSIDERING STRUCTURAL STIFFNESS EFFECT [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(1): 57-61,68. doi: 10.13204/j.gyjz200701015
[13] Liu An-jun, Gong Xiao-nan, Qian Guo-zhen. A NONLINEAR ANALYSIS OF COMBINED ACTIONS OF SOIL ANCHORS AND EARTH-RETAINING PILE WALL IN CONSIDERATION OF CONSTRUCTION STEPS [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 74-78. doi: 10.13204/j.gyjz200605020
[14] Wang Yingge. FIELD TEST AND NUMERICAL ANALYSIS OF INTERACTION OF PILE- RAFT FOUNDATION ULTRA - HIGH TUBE-IN-TUBE STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(5): 10-15. doi: 10.13204/j.gyjz200505003
[15] Xu Qiang, Wu Shengxing. NON-LINEAR FEM ANALYSIS OF INTERACTION AMONG PILE-SUPPORT, PILES AND SOIL OF A CABLE-STAYED BRIDGE [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(5): 16-19. doi: 10.13204/j.gyjz200505004
[16] Tang Gan, Yin Lingfeng, Zhao Huilin. PRELIMINARY STUDY OF VERTICAL PROP ELEMENT WITH ALTERABLE STIFFNESS IN COOPERATION OF SHEET SPACE STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(11): 5-9. doi: 10.13204/j.gyjz200411002
[17] Bao Yan, Ye Weidong, Zhang Baoliang, Zhao Xihong. A STUDY ON UNDERGROUND ENGINEERING AT HENGLONG PLAZA IN SHANGHAI [J]. INDUSTRIAL CONSTRUCTION, 2004, 34(12): 91-95. doi: 10.13204/j.gyjz200412028
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-04 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 0 1 2 3 4 5 6
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 17.2 % FULLTEXT : 17.2 % META : 82.8 % META : 82.8 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 1.0 % 其他 : 1.0 % China : 4.0 % China : 4.0 % Rochester : 1.0 % Rochester : 1.0 % [] : 3.0 % [] : 3.0 % 上海 : 3.0 % 上海 : 3.0 % 北京 : 7.1 % 北京 : 7.1 % 南京 : 1.0 % 南京 : 1.0 % 太原 : 1.0 % 太原 : 1.0 % 密蘇里城 : 1.0 % 密蘇里城 : 1.0 % 常州 : 1.0 % 常州 : 1.0 % 张家口 : 5.1 % 张家口 : 5.1 % 芒廷维尤 : 24.2 % 芒廷维尤 : 24.2 % 芝加哥 : 1.0 % 芝加哥 : 1.0 % 衡阳 : 1.0 % 衡阳 : 1.0 % 西宁 : 44.4 % 西宁 : 44.4 % 重庆 : 1.0 % 重庆 : 1.0 % 其他 China Rochester [] 上海 北京 南京 太原 密蘇里城 常州 张家口 芒廷维尤 芝加哥 衡阳 西宁 重庆