Shang Lingyun, Lu Xiaoyang, Zhou Xuejun. SIZE OPTIMIZATION DESIGN OF SPATIAL LATTICE SHELL BASED ON DISC RETE VARIABLES[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(9): 74-77,98. doi: 10.13204/j.gyjz200409022
Citation:
Shang Lingyun, Lu Xiaoyang, Zhou Xuejun. SIZE OPTIMIZATION DESIGN OF SPATIAL LATTICE SHELL BASED ON DISC RETE VARIABLES[J]. INDUSTRIAL CONSTRUCTION , 2004, 34(9): 74-77,98. doi: 10.13204/j.gyjz200409022
Shang Lingyun, Lu Xiaoyang, Zhou Xuejun. SIZE OPTIMIZATION DESIGN OF SPATIAL LATTICE SHELL BASED ON DISC RETE VARIABLES[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(9): 74-77,98. doi: 10.13204/j.gyjz200409022
Citation:
Shang Lingyun, Lu Xiaoyang, Zhou Xuejun. SIZE OPTIMIZATION DESIGN OF SPATIAL LATTICE SHELL BASED ON DISC RETE VARIABLES[J]. INDUSTRIAL CONSTRUCTION , 2004, 34(9): 74-77,98. doi: 10.13204/j.gyjz200409022
SIZE OPTIMIZATION DESIGN OF SPATIAL LATTICE SHELL BASED ON DISC RETE VARIABLES
1.
1. College of Civil Engineering,Tongji University Shanghai 200092;
2.
2. Mechanical Institute,Shandong College of Architecture and Engineering Jinan 250014;
3.
3. Department of Civil Engineering,Shandong College of Architecture and Engineering Jinan 250014
Received Date: 2003-12-20
Publish Date:
2004-09-20
Abstract
Taking the sizes of cross sections and the volume of ordinary spherical nodes as design variables and overall cost as objective function, the size optimization design of spatial lattice shell is developed by means of two-level algorithem based on discrete variables.The credible structural analysis programme named Algor(Super SAP93) is combined to accomplish the finite element analysis of mathematical model. In addition, zero-step modification is considered to improve the computational precision. At the end, through two numerical examples, the theories above are tested and verified to be correct. Compared with full stress optimization method, the computational results are satisfactory.
References
[2] 孙焕纯,柴山,王跃方.用变量结构优化设计.大连:大连理工大学出版社,1995
张炳华,侯昶.土建结构优化设计.上海:同济大学出版社,1998
[3] 邓华.空间网格结构基于离散变量的优化设计.空间结构,2000,6(3):26~32
[4] 王跃方,孙焕纯.多工况多约束下离散变量桁架结构的拓扑优化设计.力学学报,1995,27(3):365~369
[5] 龚景海,刘锡良.基于遗传算法的网格结构优化方法.天津大学学报,1995,33(5):93~96
[6] 沈祖炎,陈扬骥.网架与网壳.上海:同济大学出版社,1997
[7] 邓华,董石麟.空间网壳结构的形状优化.浙江大学学报(工学版),1999,33(4):371~375
[8] 尹德钰,刘善维,钱若军.网壳结构设计.北京:中国建筑工业出版社,1996
Relative Articles
[1] ZHANG Ailin, FENG Huan, JIANG Ziqin, LIU Yi. Intelligent Prediction of Stability Bearing Capacity of New-Type Modular Assembled Latticed Shells with Flange Connections [J]. INDUSTRIAL CONSTRUCTION, 2024, 54(8): 54-61. doi: 10.3724/j.gyjzG24031604
[2] Fan Feng, Zhi Xudong. FAILURE MECHANISM OF RETICULATED SHELLS SUBJECTED TO SEVERE EARTHQUAKES [J]. INDUSTRIAL CONSTRUCTION, 2015, 45(1): 10-15. doi: 10.13204/j.gyjz201501002
[3] Lin Yongjun, Song Changjiang, Luo Nan, Li Mingshui, Gao Xiujian. STUDY ON WIND TUNNEL TEST OF LARGE-SPAN SINGLE-LAYER RETICULATED SHELL STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2013, 43(7): 130-134. doi: 10.13204/j.gyjz201307029
[4] Kong Dandan, Ding Haomin, He Zhijun. STATIC AND CONSTRUCTION PROCESS OPTIMIZATION ANALYSIS OF CABLE-STRUT-SUPPORTED SHELL STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2008, 38(6): 86-91. doi: 10.13204/j.gyjz200806023
[5] Li Yong-mei, Zhang Yi-gang, Li Xue-song. SECTION OPTIMIZATION OF CABLE-SUPPORTED LATTICE SHELLS [J]. INDUSTRIAL CONSTRUCTION, 2007, 37(4): 73-76. doi: 10.13204/j.gyjz200704020
[6] Luo Yao-zhi, Jiang Tao. THE PRATICAL APPLICATION OF STRING-BOW LATTICED SHELL STRUCTURE [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(6): 92-95. doi: 10.13204/j.gyjz200606025
[7] Zhang Jian-sheng, Wu Yue, Shen Shi-zhao. STUDY ON WIND-INDUCED VIBRATION OF SINGLE-LAYER CYLINDRICAL RETICULATED SHELL STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2006, 36(10): 69-71. doi: 10.13204/j.gyjz200610019
[8] Luo Yaozhi, Wu Xuancheng, Shen Yanbin, Hu Ning. CURRENT STATUS AND IMPERFECTION ANALYSIS OF LATTICED SHELL STRUCTURES OF INDOOR COAL STORAGE YARD [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(5): 88-91. doi: 10.13204/j.gyjz200505023
[9] Zhang Yannian, Liu Bin, . APPLICATION OF HYBRID GENETIC ALGORITHM TO OPTIMUM DESIGN OF ENGINEERING STRUCTURES [J]. INDUSTRIAL CONSTRUCTION, 2005, 35(3): 23-26. doi: 10.13204/j.gyjz200503010
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 2.5 5 7.5 10
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 22.9 % FULLTEXT : 22.9 % META : 77.1 % META : 77.1 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 12.5 % 其他 : 12.5 % China : 4.2 % China : 4.2 % 北京 : 6.3 % 北京 : 6.3 % 厦门 : 2.1 % 厦门 : 2.1 % 张家口 : 10.4 % 张家口 : 10.4 % 湖州 : 2.1 % 湖州 : 2.1 % 芒廷维尤 : 41.7 % 芒廷维尤 : 41.7 % 西宁 : 18.8 % 西宁 : 18.8 % 阳泉 : 2.1 % 阳泉 : 2.1 % 其他 China 北京 厦门 张家口 湖州 芒廷维尤 西宁 阳泉