| Citation: | WANG Yanyan, XU Man, XU Qing, TIAN Huiwen, ZENG Bin, XU Zhen. Experimental Research on Short-Term and Long-Term Mechanical Properties of Prestressed FRP Tendons/Cables[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(10): 1-14. doi: 10.3724/j.gyjzG25042503 |
| [1] |
梁书亭,王文康,朱筱俊,等. 预应力在我国大跨度结构中的应用研究综述[J]. 东南大学学报(自然科学版),2024,54(3):559-566.
|
| [2] |
李富民,邓天慈,王江浩,等. 预应力混凝土结构耐久性研究综述[J]. 建筑科学与工程学报,2015,32(2):1-20.
|
| [3] |
叶列平,冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报,2006,39(3):24-36.
|
| [4] |
冯鹏,叶列平,金飞飞,等. FRP桥梁结构的受力性能与设计方法[J]. 玻璃钢/复合材料,2011(5):12-19.
|
| [5] |
朱虹,钱洋. 工程结构用FRP筋的力学性能[J]. 建筑科学与工程学报,2006(3):26-31.
|
| [6] |
XIE G H,YIN J,LIU R G,et al. Experimental and numerical investigation on the static and dynamic behaviors of cable‐stayed bridges with CFRP cables[J]. Composites Part B:Engineering,2016,111:235-242.
|
| [7] |
SCHMIDT J W,BENNITZ A,TALJSTEN B,et al. Mechanical anchorage of FRP tendons:a literature review[J]. Construction and Building Materials,2012,32:110-121.
|
| [8] |
D'ANTINO T,PISANI M A. Long‐term behavior of GFRP reinforcing bars[J]. Composite Structures,2019,227,111283.
|
| [9] |
LI G W,WU J T,GE W M. Effect of loading rate and chemical corrosion on the mechanical properties of large diameter glass/basalt‐glass FRP bars[J]. Construction and Building Materials,2015,93:1059-1066.
|
| [10] |
顾兴宇,沈新,陆家颖. 玄武岩纤维筋拉伸力学性能试验研究[J]. 西南交通大学学报,2010,45(6):914-919.
|
| [11] |
夏鹏飞. 常泰长江大桥主航道桥纵向约束索CFRP筋材及成品索试制试验研究[J]. 桥梁建设,2024,54(5):1-6.
|
| [12] |
罗金标,彭哲琦,汪昕,等. 新型玄武岩纤维复合材料(BFRP)锚杆力学性能研究[J]. 复合材料科学与工程,2022(12):79-86.
|
| [13] |
陆春华,平安,延永东,等. 高温作用后GFRP/BFRP筋拉伸性能试验研究及强度折减计算[J]. 哈尔滨工程大学学报,2023,44(3):443-449.
|
| [14] |
BENMOKRANE B,ZHANG B,CHENNOUF A. Tensile properties and pullout behaviour of AFRP and CFRP rods for grouted anchor applications[J]. Construction and Building Materials,2000,14(3):157-170.
|
| [15] |
PROTCHENKO K,ZAYOUD F,URBANSKI M,et al. Tensile and shear testing of basalt fiber reinforced polymer(BFRP)and hybrid basalt/carbon fiber reinforced polymer(HFRP)bars[J]. Materials,2020,13(24),5839.
|
| [16] |
URBANSKI M,LAPKO A,GARBACZ A. Investigation on concrete beams reinforced with basalt rebars as an effective alternative of conventional R/C structures[J]. Procedia Engineering,2013,57:1183-1191.
|
| [17] |
KIM Y J. Flexural response of concrete beams prestressed with AFRP tendons:numerical investigation[J]. Journal of Composites for Construction,2010,14(6):647-658.
|
| [18] |
WANG X,SHI J Z,WU Z S,et al. Creep strain control by pretension for basalt fiber‐reinforced polymer tendon in civil applications[J]. Materials & Design,2016,89:1270-1277.
|
| [19] |
MEI K H,SERACINO R,LYU Z T. An experimental study on bond‐type anchorages for carbon fiber‐reinforced polymer cables[J]. Construction and Building Materials,2016,106:584-591.
|
| [20] |
LU C H,QI Z H,ZHENG Y L,et al. Long‐term tensile performance of GFRP bars in loaded concrete and aggressive solutions[J]. Journal of Building Engineering,2023,64,105587.
|
| [21] |
高永红,田云,金清平,等. 温度对GFRP筋拉伸力学性能的影响研究[J]. 塑胶工业,2016,44(9):95-99.
|
| [22] |
SZMIGIERA E D,PROTCHENKO K,URBANSKI M,et al. Mechanical properties of hybrid FRP bars and nano‐hybrid FRP bars[J]. Archives of Civil Engineering,2019,65(1):97-110.
|
| [23] |
LI J Y,FANG Z,FANG Y W,et al. A practical model for predicting the tensile capacity of CFRP strand cables[J]. Construction and Building Materials,2025,463,140084.
|
| [24] |
WANG X,WU Z S,WU G,et al. Enhancement of basalt FRP by hybridization for long‐span cable‐stayed bridge[J]. Composites Part B:Engineering,2013,44:184-192.
|
| [25] |
GENIKOMSOU A S,BALOMENOS G P,ARCZEWSKA P,et al. Transverse shear testing of GFRP bars with reduced cross sections[J]. Journal of Composites for Construction,2018,22(5),04018032.
|
| [26] |
WANG X,WANG Z H,WU Z S,et al. Shear behavior of basalt fiber reinforced polymer(FRP)and hybrid FRP rods as shear resistance members[J]. Construction and Building Materials,2014,73:781-789.
|
| [27] |
HAN Q H,WANG L C,XU J. Experimental research on mechanical properties of transverse enhanced and high‐temperature‐resistant CFRP tendons for prestressed structure[J]. Construction and Building Materials,2015,98:864-874.
|
| [28] |
YUN H D,KIM S H,CHOI W. Determination of mechanical properties of sand‐coated carbon fiber reinforced polymer(CFRP)rebar[J]. Polymers,2023,15(9),2186.
|
| [29] |
Canadian Standards Association. Design and construction of building structures with fibre‐reinforced polymers:CSA S806-12(R2017)[S]. Toronto:CSA Group,2017.
|
| [30] |
付成龙,陈利,张雅璐. 几何尺寸与温度对CFRP筋材力学性能的影响[J]. 玻璃钢/复合材料,2016(5):74-79.
|
| [31] |
黄亚新,苗大胜,程曦,等. 不同种类拉挤FRP筋材压缩强度研究[J]. 工程塑胶应用,2012,40(8):81-85.
|
| [32] |
URBAŃSKI M. Compressive strength of modified FRP hybrid bars[J]. Materials,2020,13(8),1898.
|
| [33] |
ZHENG Y,SUN Z Y,TANG Y,et al. Experimental study on the compressive performance and enhancement of buckling resistance for composite bars[J]. Journal of Materials in Civil Engineering,2025,37(1),04024445.
|
| [34] |
关纪文,陈红梅,韦丽兰,等. 结构用GFRP筋受压力学性能试验[J]. 湖南科技大学学报(自然科学版),2023,38(4):37-43.
|
| [35] |
ZHOU Z L,MENG L,ZENG F,et al. Experimental study and discrete analysis of compressive properties of glass fiber‐reinforced polymer(GFRP)bars[J]. Polymers,2023,15(12),2651.
|
| [36] |
孙丽,王汉珽. GFRP筋受压力学性能试验[J]. 沈阳建筑大学学报(自然科学版),2011,27(6):1037-1042.
|
| [37] |
ALNAJMI L,ABED F. Evaluation of FRP bars under compression and their performance in RC columns[J]. Materials,2020,13(19),4541.
|
| [38] |
HIESCH D,PROSKE T,GRAUBNER C A,et al. Theoretical and experimental investigation of the time‐dependent relaxation rates of GFRP and BFRP reinforcement bars[J]. Structural Concrete,2023,24:2800-2816.
|
| [39] |
YANG D,ZHANG J W,SONG S T,et al. Experimental investigation on the creep property of carbon fiber reinforced polymer tendons under high stress levels[J]. Materials,2018,11(11),2273.
|
| [40] |
ATUTIS M,VALIVONIS J,ATUTIS E. Experimental study of concrete beams prestressed with basalt fiber reinforced polymers. Part Ⅱ:stress relaxation phenomenon[J]. Composite Structures,2018,202:344-354.
|
| [41] |
ZHOU J Y,WANG X,LIU X,et al. Numerical and experimental evaluation of a variable‐stiffness wedge anchorage for basalt‐fiber‐reinforced polymer tendons[J]. Engineering Structures,2024,304,117684.
|
| [42] |
GRACE N F,MOHAMED M E,BEBAWY M R. Evaluating fatigue,relaxation,and creep rupture of carbon‐fiber‐reinforced polymer strands for highway bridge construction[J]. PCI Journal,2023,68(3):36-61.
|
| [43] |
WANG X,SHI J Z,LIU J,et al. Creep behavior of basalt fiber reinforced polymer tendons for prestressing application[J]. Materials and Design,2014,59:558-564.
|
| [44] |
AI P C,DING G Z,LI Z Y,et al. Long‐term creep behavior of novel self‐anchored CFRP cable system[J]. Composite Structures,2024,334,117965.
|
| [45] |
ZHU G H,CHENG H,DENG Z P,et al. Creep behavior analysis and creep rupture prediction of carbon‐glass fiber reinforced polymer tendon[J]. Chemical Engineering Transactions,2015,46:463-468.
|
| [46] |
SOKAIRGE H,ELGABBAS F,RASHAD A,et al. Long‐term creep behavior of basalt fiber reinforced polymer bars[J]. Construction and Building Materials,2020,260,120437.
|
| [47] |
YOUSSEF T,BENMOKRANE B. Creep behavior and tensile properties of GFRP bars under sustained service loads[J]. ACI Special Publication,2011,275:1-20.
|
| [48] |
SHI J Z,WANG X,WU Z S,et al. Creep behavior enhancement of a basalt fiber‐reinforced polymer tendon[J]. Construction and Building Materials,2015,94:750-757.
|
| [49] |
ROSSINI M,SAQAN E,NANNI A. Prediction of the creep rupture strength of GFRP bars[J]. Construction and Building Materials,2019,227,116620.
|
| [50] |
SAADATMANESH H,TANNOUS F E. Long‐term behavior of aramid fiber‐reinforced plastic(AFRP)tendons[J]. ACI Materials Journal,1999,96(3):291-299.
|
| [51] |
SAADATMANESH H,TANNOUS F E. Relaxation,creep,and fatigue behavior of carbon fiber reinforced plastic tendons[J]. ACI Materials Journal,1999,96(2):143-153.
|
| [52] |
WANG X,SHI J Z,WU Z S,et al. Fatigue behavior of basalt fiber‐reinforced polymer tendons for prestressing applications[J]. Journal of Composites for Construction,2016,20(3),04015079.
|
| [53] |
FENG B,WANG X,WU Z S,et al. Performance of anchorage assemblies for CFRP cables under fatigue loads[J]. Structures,2021,29:947-953.
|
| [54] |
REFAIAI A EL. Durability and fatigue of basalt fiber‐reinforced polymer bars gripped with steel wedge anchors[J]. Journal of Composites for Construction,2013,17(6),04013006.
|
| [55] |
ZHAO X,WANG X,WU Z S,et al. Fatigue behavior and failure mechanism of basalt FRP composites under long‐term cyclic loads[J]. International Journal of Fatigue,2016,88:58-67.
|
| [56] |
赵杏. FRP拉索疲劳损伤演化规律和寿命可控设计方法研究[D]. 南京:东南大学,2018.
|
| [57] |
ADIMI M R,RAHMAN A H,BENMOKRANE B. New method for testing fiber reinforced polymer rods under fatigue[J]. Journal of Composites for Construction,2000,4(4):206-213.
|
| [58] |
张新越,欧进萍. CFRP筋的疲劳性能[J]. 材料研究学报,2006,20(6):565-570.
|
| [59] |
SONG S T,ZANG H R,DUAN N,et al. Experimental research and analysis on fatigue life of carbon fiber reinforced polymer(CFRP)tendons[J]. Materials,2019,12(20),3383.
|
| [60] |
ZHAO X,WANG X,WU Z S,et al. Effect of stress ratios on tension‐tension fatigue behavior and micro‐damage evolution of basalt fiber‐reinforced epoxy polymer composites[J]. Journal of Materials Science,2018,53(13):9545-9556.
|
| [61] |
GUO R,XIAN G J,LI C G,et al. Effect of fiber hybrid mode on the tension‐tension fatigue performance for the pultruded carbon/glass fiber reinforced polymer composite rod[J]. Engineering Fracture Mechanics,2022,260,108208.
|
| [62] |
LI C G,XIAN G J,LI H. Tension‐tension fatigue performance of a large‐diameter pultruded carbon/glass hybrid rod[J]. International Journal of Fatigue,2019,120:141-149.
|
| [63] |
BAI N N,LI H,LAN C M,et al. Influencing factors and sensitivity analysis for the fatigue of FRP wire based on the progressive fatigue damage model[J]. Composite Structures,2024,334,117982.
|
| [64] |
方志,龚畅,杨剑,等. CFRP预应力筋粘结式锚固系统的抗疲劳性能[J]. 公路交通科技,2012,29(7):58-63.
|
| [65] |
REIFSNIDER K L,HENNEKE E G,STINCHCOMB W W,et al. Damage mechanics and NDE of composite laminates[M] //HASHIN Z,HERAKOVICH C T. Mechanics of composite materials:recent advances. New York:Pergamon Press Ltd.,1983:399-420.
|
| [66] |
WANG C,ZHANG J W. Experimental and analytical study on residual stiffness/strength of CFRP tendons under cyclic loading[J]. Materials,2020,13(24),5653.
|
| [67] |
WANG C,ZHANG J W,GONZALEZ-LIBREROS J,et al. A quantitative residual stiffness model for carbon fiber reinforced polymer tendons[J]. Fatigue & Fracture of Engineering Materials & Structures,2024,47(5):2068-2084.
|
| [68] |
中国国家标准化管理委员会. 纤维增强复合材料筋基本力学性能试验方法:GB/T 30022—2013[S]. 北京:中国标准出版社,2013.
|
| [69] |
American Concrete Institute. Guide test methods for fiber‐reinforced polymers(FRP)composites for reinforcing or strengthening concrete and masonry structures:ACI 440.3R-12[S]. Farmington Hills:ACI,2012.
|
| [70] |
ASTM International. Standard test method for tensile properties of fiber reinforced polymer matrix composite bars:ASTM D7205/D7205M-21[S]. West Conshohocken:ASTM International,2021.
|
| [71] |
ASTM International. Standard test method for tensile creep rupture of fiber reinforced polymer matrix composite bars:ASTM D7337/D7337M-12[S]. West Conshohocken:ASTM International,2012.
|
| [72] |
ASTM International. Standard test method for tension-tension fatigue of polymer matrix composite materials:ASTM D3479/D3479M-19(Reapproved 2023)[S]. West Conshohocken:ASTM International,2023.
|