Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 55 Issue 10
Oct.  2025
Turn off MathJax
Article Contents
WANG Yanyan, XU Man, XU Qing, TIAN Huiwen, ZENG Bin, XU Zhen. Experimental Research on Short-Term and Long-Term Mechanical Properties of Prestressed FRP Tendons/Cables[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(10): 1-14. doi: 10.3724/j.gyjzG25042503
Citation: WANG Yanyan, XU Man, XU Qing, TIAN Huiwen, ZENG Bin, XU Zhen. Experimental Research on Short-Term and Long-Term Mechanical Properties of Prestressed FRP Tendons/Cables[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(10): 1-14. doi: 10.3724/j.gyjzG25042503

Experimental Research on Short-Term and Long-Term Mechanical Properties of Prestressed FRP Tendons/Cables

doi: 10.3724/j.gyjzG25042503
  • Received Date: 2025-04-25
  • Publish Date: 2025-10-31
  • Fiber-reinforced polymer (FRP) composites are high-performance materials characterized by their high strength, lightweight, corrosion resistance, and excellent fatigue resistance, making them highly promising for prestressed structural applications. However, FRPs are typically orthotropic materials, exhibiting significantly lower strength and modulus perpendicular to the fiber direction compared to the longitudinal direction, posing challenges for the application of FRP tendons/cables. Existing research findings remain insufficient to support the standardized use of FRP tendons/cables in prestressed structures. Based on recent experimental studies and theoretical analyses of FRP tendons/cables, this paper summarizes the testing methods, failure modes, mechanical characteristics, and other relevant conclusions under different loading conditions. It systematically examines the influence of various factors—such as fiber type and content, tendon/cable diameter, manufacturing processes, and testing methods—on the short- and long-term mechanical properties of FRP tendons/cables. Furthermore, future research and development directions for FRP tendons/cables are outlined, providing valuable insights for both academic research and practical engineering applications.
  • loading
  • [1]
    梁书亭,王文康,朱筱俊,等. 预应力在我国大跨度结构中的应用研究综述[J]. 东南大学学报(自然科学版),2024,54(3):559-566.
    [2]
    李富民,邓天慈,王江浩,等. 预应力混凝土结构耐久性研究综述[J]. 建筑科学与工程学报,2015,32(2):1-20.
    [3]
    叶列平,冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报,2006,39(3):24-36.
    [4]
    冯鹏,叶列平,金飞飞,等. FRP桥梁结构的受力性能与设计方法[J]. 玻璃钢/复合材料,2011(5):12-19.
    [5]
    朱虹,钱洋. 工程结构用FRP筋的力学性能[J]. 建筑科学与工程学报,2006(3):26-31.
    [6]
    XIE G H,YIN J,LIU R G,et al. Experimental and numerical investigation on the static and dynamic behaviors of cable‐stayed bridges with CFRP cables[J]. Composites Part B:Engineering,2016,111:235-242.
    [7]
    SCHMIDT J W,BENNITZ A,TALJSTEN B,et al. Mechanical anchorage of FRP tendons:a literature review[J]. Construction and Building Materials,2012,32:110-121.
    [8]
    D'ANTINO T,PISANI M A. Long‐term behavior of GFRP reinforcing bars[J]. Composite Structures,2019,227,111283.
    [9]
    LI G W,WU J T,GE W M. Effect of loading rate and chemical corrosion on the mechanical properties of large diameter glass/basalt‐glass FRP bars[J]. Construction and Building Materials,2015,93:1059-1066.
    [10]
    顾兴宇,沈新,陆家颖. 玄武岩纤维筋拉伸力学性能试验研究[J]. 西南交通大学学报,2010,45(6):914-919.
    [11]
    夏鹏飞. 常泰长江大桥主航道桥纵向约束索CFRP筋材及成品索试制试验研究[J]. 桥梁建设,2024,54(5):1-6.
    [12]
    罗金标,彭哲琦,汪昕,等. 新型玄武岩纤维复合材料(BFRP)锚杆力学性能研究[J]. 复合材料科学与工程,2022(12):79-86.
    [13]
    陆春华,平安,延永东,等. 高温作用后GFRP/BFRP筋拉伸性能试验研究及强度折减计算[J]. 哈尔滨工程大学学报,2023,44(3):443-449.
    [14]
    BENMOKRANE B,ZHANG B,CHENNOUF A. Tensile properties and pullout behaviour of AFRP and CFRP rods for grouted anchor applications[J]. Construction and Building Materials,2000,14(3):157-170.
    [15]
    PROTCHENKO K,ZAYOUD F,URBANSKI M,et al. Tensile and shear testing of basalt fiber reinforced polymer(BFRP)and hybrid basalt/carbon fiber reinforced polymer(HFRP)bars[J]. Materials,2020,13(24),5839.
    [16]
    URBANSKI M,LAPKO A,GARBACZ A. Investigation on concrete beams reinforced with basalt rebars as an effective alternative of conventional R/C structures[J]. Procedia Engineering,2013,57:1183-1191.
    [17]
    KIM Y J. Flexural response of concrete beams prestressed with AFRP tendons:numerical investigation[J]. Journal of Composites for Construction,2010,14(6):647-658.
    [18]
    WANG X,SHI J Z,WU Z S,et al. Creep strain control by pretension for basalt fiber‐reinforced polymer tendon in civil applications[J]. Materials & Design,2016,89:1270-1277.
    [19]
    MEI K H,SERACINO R,LYU Z T. An experimental study on bond‐type anchorages for carbon fiber‐reinforced polymer cables[J]. Construction and Building Materials,2016,106:584-591.
    [20]
    LU C H,QI Z H,ZHENG Y L,et al. Long‐term tensile performance of GFRP bars in loaded concrete and aggressive solutions[J]. Journal of Building Engineering,2023,64,105587.
    [21]
    高永红,田云,金清平,等. 温度对GFRP筋拉伸力学性能的影响研究[J]. 塑胶工业,2016,44(9):95-99.
    [22]
    SZMIGIERA E D,PROTCHENKO K,URBANSKI M,et al. Mechanical properties of hybrid FRP bars and nano‐hybrid FRP bars[J]. Archives of Civil Engineering,2019,65(1):97-110.
    [23]
    LI J Y,FANG Z,FANG Y W,et al. A practical model for predicting the tensile capacity of CFRP strand cables[J]. Construction and Building Materials,2025,463,140084.
    [24]
    WANG X,WU Z S,WU G,et al. Enhancement of basalt FRP by hybridization for long‐span cable‐stayed bridge[J]. Composites Part B:Engineering,2013,44:184-192.
    [25]
    GENIKOMSOU A S,BALOMENOS G P,ARCZEWSKA P,et al. Transverse shear testing of GFRP bars with reduced cross sections[J]. Journal of Composites for Construction,2018,22(5),04018032.
    [26]
    WANG X,WANG Z H,WU Z S,et al. Shear behavior of basalt fiber reinforced polymer(FRP)and hybrid FRP rods as shear resistance members[J]. Construction and Building Materials,2014,73:781-789.
    [27]
    HAN Q H,WANG L C,XU J. Experimental research on mechanical properties of transverse enhanced and high‐temperature‐resistant CFRP tendons for prestressed structure[J]. Construction and Building Materials,2015,98:864-874.
    [28]
    YUN H D,KIM S H,CHOI W. Determination of mechanical properties of sand‐coated carbon fiber reinforced polymer(CFRP)rebar[J]. Polymers,2023,15(9),2186.
    [29]
    Canadian Standards Association. Design and construction of building structures with fibre‐reinforced polymers:CSA S806-12(R2017)[S]. Toronto:CSA Group,2017.
    [30]
    付成龙,陈利,张雅璐. 几何尺寸与温度对CFRP筋材力学性能的影响[J]. 玻璃钢/复合材料,2016(5):74-79.
    [31]
    黄亚新,苗大胜,程曦,等. 不同种类拉挤FRP筋材压缩强度研究[J]. 工程塑胶应用,2012,40(8):81-85.
    [32]
    URBAŃSKI M. Compressive strength of modified FRP hybrid bars[J]. Materials,2020,13(8),1898.
    [33]
    ZHENG Y,SUN Z Y,TANG Y,et al. Experimental study on the compressive performance and enhancement of buckling resistance for composite bars[J]. Journal of Materials in Civil Engineering,2025,37(1),04024445.
    [34]
    关纪文,陈红梅,韦丽兰,等. 结构用GFRP筋受压力学性能试验[J]. 湖南科技大学学报(自然科学版),2023,38(4):37-43.
    [35]
    ZHOU Z L,MENG L,ZENG F,et al. Experimental study and discrete analysis of compressive properties of glass fiber‐reinforced polymer(GFRP)bars[J]. Polymers,2023,15(12),2651.
    [36]
    孙丽,王汉珽. GFRP筋受压力学性能试验[J]. 沈阳建筑大学学报(自然科学版),2011,27(6):1037-1042.
    [37]
    ALNAJMI L,ABED F. Evaluation of FRP bars under compression and their performance in RC columns[J]. Materials,2020,13(19),4541.
    [38]
    HIESCH D,PROSKE T,GRAUBNER C A,et al. Theoretical and experimental investigation of the time‐dependent relaxation rates of GFRP and BFRP reinforcement bars[J]. Structural Concrete,2023,24:2800-2816.
    [39]
    YANG D,ZHANG J W,SONG S T,et al. Experimental investigation on the creep property of carbon fiber reinforced polymer tendons under high stress levels[J]. Materials,2018,11(11),2273.
    [40]
    ATUTIS M,VALIVONIS J,ATUTIS E. Experimental study of concrete beams prestressed with basalt fiber reinforced polymers. Part Ⅱ:stress relaxation phenomenon[J]. Composite Structures,2018,202:344-354.
    [41]
    ZHOU J Y,WANG X,LIU X,et al. Numerical and experimental evaluation of a variable‐stiffness wedge anchorage for basalt‐fiber‐reinforced polymer tendons[J]. Engineering Structures,2024,304,117684.
    [42]
    GRACE N F,MOHAMED M E,BEBAWY M R. Evaluating fatigue,relaxation,and creep rupture of carbon‐fiber‐reinforced polymer strands for highway bridge construction[J]. PCI Journal,2023,68(3):36-61.
    [43]
    WANG X,SHI J Z,LIU J,et al. Creep behavior of basalt fiber reinforced polymer tendons for prestressing application[J]. Materials and Design,2014,59:558-564.
    [44]
    AI P C,DING G Z,LI Z Y,et al. Long‐term creep behavior of novel self‐anchored CFRP cable system[J]. Composite Structures,2024,334,117965.
    [45]
    ZHU G H,CHENG H,DENG Z P,et al. Creep behavior analysis and creep rupture prediction of carbon‐glass fiber reinforced polymer tendon[J]. Chemical Engineering Transactions,2015,46:463-468.
    [46]
    SOKAIRGE H,ELGABBAS F,RASHAD A,et al. Long‐term creep behavior of basalt fiber reinforced polymer bars[J]. Construction and Building Materials,2020,260,120437.
    [47]
    YOUSSEF T,BENMOKRANE B. Creep behavior and tensile properties of GFRP bars under sustained service loads[J]. ACI Special Publication,2011,275:1-20.
    [48]
    SHI J Z,WANG X,WU Z S,et al. Creep behavior enhancement of a basalt fiber‐reinforced polymer tendon[J]. Construction and Building Materials,2015,94:750-757.
    [49]
    ROSSINI M,SAQAN E,NANNI A. Prediction of the creep rupture strength of GFRP bars[J]. Construction and Building Materials,2019,227,116620.
    [50]
    SAADATMANESH H,TANNOUS F E. Long‐term behavior of aramid fiber‐reinforced plastic(AFRP)tendons[J]. ACI Materials Journal,1999,96(3):291-299.
    [51]
    SAADATMANESH H,TANNOUS F E. Relaxation,creep,and fatigue behavior of carbon fiber reinforced plastic tendons[J]. ACI Materials Journal,1999,96(2):143-153.
    [52]
    WANG X,SHI J Z,WU Z S,et al. Fatigue behavior of basalt fiber‐reinforced polymer tendons for prestressing applications[J]. Journal of Composites for Construction,2016,20(3),04015079.
    [53]
    FENG B,WANG X,WU Z S,et al. Performance of anchorage assemblies for CFRP cables under fatigue loads[J]. Structures,2021,29:947-953.
    [54]
    REFAIAI A EL. Durability and fatigue of basalt fiber‐reinforced polymer bars gripped with steel wedge anchors[J]. Journal of Composites for Construction,2013,17(6),04013006.
    [55]
    ZHAO X,WANG X,WU Z S,et al. Fatigue behavior and failure mechanism of basalt FRP composites under long‐term cyclic loads[J]. International Journal of Fatigue,2016,88:58-67.
    [56]
    赵杏. FRP拉索疲劳损伤演化规律和寿命可控设计方法研究[D]. 南京:东南大学,2018.
    [57]
    ADIMI M R,RAHMAN A H,BENMOKRANE B. New method for testing fiber reinforced polymer rods under fatigue[J]. Journal of Composites for Construction,2000,4(4):206-213.
    [58]
    张新越,欧进萍. CFRP筋的疲劳性能[J]. 材料研究学报,2006,20(6):565-570.
    [59]
    SONG S T,ZANG H R,DUAN N,et al. Experimental research and analysis on fatigue life of carbon fiber reinforced polymer(CFRP)tendons[J]. Materials,2019,12(20),3383.
    [60]
    ZHAO X,WANG X,WU Z S,et al. Effect of stress ratios on tension‐tension fatigue behavior and micro‐damage evolution of basalt fiber‐reinforced epoxy polymer composites[J]. Journal of Materials Science,2018,53(13):9545-9556.
    [61]
    GUO R,XIAN G J,LI C G,et al. Effect of fiber hybrid mode on the tension‐tension fatigue performance for the pultruded carbon/glass fiber reinforced polymer composite rod[J]. Engineering Fracture Mechanics,2022,260,108208.
    [62]
    LI C G,XIAN G J,LI H. Tension‐tension fatigue performance of a large‐diameter pultruded carbon/glass hybrid rod[J]. International Journal of Fatigue,2019,120:141-149.
    [63]
    BAI N N,LI H,LAN C M,et al. Influencing factors and sensitivity analysis for the fatigue of FRP wire based on the progressive fatigue damage model[J]. Composite Structures,2024,334,117982.
    [64]
    方志,龚畅,杨剑,等. CFRP预应力筋粘结式锚固系统的抗疲劳性能[J]. 公路交通科技,2012,29(7):58-63.
    [65]
    REIFSNIDER K L,HENNEKE E G,STINCHCOMB W W,et al. Damage mechanics and NDE of composite laminates[M] //HASHIN Z,HERAKOVICH C T. Mechanics of composite materials:recent advances. New York:Pergamon Press Ltd.,1983:399-420.
    [66]
    WANG C,ZHANG J W. Experimental and analytical study on residual stiffness/strength of CFRP tendons under cyclic loading[J]. Materials,2020,13(24),5653.
    [67]
    WANG C,ZHANG J W,GONZALEZ-LIBREROS J,et al. A quantitative residual stiffness model for carbon fiber reinforced polymer tendons[J]. Fatigue & Fracture of Engineering Materials & Structures,2024,47(5):2068-2084.
    [68]
    中国国家标准化管理委员会. 纤维增强复合材料筋基本力学性能试验方法:GB/T 30022—2013[S]. 北京:中国标准出版社,2013.
    [69]
    American Concrete Institute. Guide test methods for fiber‐reinforced polymers(FRP)composites for reinforcing or strengthening concrete and masonry structures:ACI 440.3R-12[S]. Farmington Hills:ACI,2012.
    [70]
    ASTM International. Standard test method for tensile properties of fiber reinforced polymer matrix composite bars:ASTM D7205/D7205M-21[S]. West Conshohocken:ASTM International,2021.
    [71]
    ASTM International. Standard test method for tensile creep rupture of fiber reinforced polymer matrix composite bars:ASTM D7337/D7337M-12[S]. West Conshohocken:ASTM International,2012.
    [72]
    ASTM International. Standard test method for tension-tension fatigue of polymer matrix composite materials:ASTM D3479/D3479M-19(Reapproved 2023)[S]. West Conshohocken:ASTM International,2023.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (37) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return