Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 55 Issue 7
Jul.  2025
Turn off MathJax
Article Contents
TAN Ziyang, ZHOU Xiaoyong. A Neural Network Algorithm for Ultrasonic Imaging of Pile Defects[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(7): 51-59. doi: 10.3724/j.gyjzG25010305
Citation: TAN Ziyang, ZHOU Xiaoyong. A Neural Network Algorithm for Ultrasonic Imaging of Pile Defects[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(7): 51-59. doi: 10.3724/j.gyjzG25010305

A Neural Network Algorithm for Ultrasonic Imaging of Pile Defects

doi: 10.3724/j.gyjzG25010305
  • Received Date: 2025-01-03
    Available Online: 2025-09-12
  • Ultrasonic testing has been widely used in the quality inspection of pile foundations due to its non-destructiveness and high accuracy. Traditional ultrasonic transmission method relies on two-dimensional waveform diagrams (e.g., sound velocity, amplitude, and PSD) for defect judgment, and the readability and intuitiveness of the detection results are relatively poor. Based on a modified residual convolutional neural network algorithm (M-ResNet), an original ultrasonic dataset using the ray-tracing method was constructed. Deep learning technology was employed to train the network model, and MATLAB was used to develop code for displaying 3D pile foundation defect images and detection results. Evaluation indicators (ICC and CCC) for defect images and algorithm noise immunity tests demonstrated that the algorithm operated rapidly with high detection accuracy, could directly display the defect range and size, and showed more advantages in imaging compared to traditional methods. The proposed method can directly use existing instruments and test data from conventional ultrasonic methods to achieve 3D visualization and defect detection, with research results applicable to similar engineering inspections.
  • loading
  • [1]
    DAVIS A G,ALLEN G. Nondestructive evaluation of existing deep foundations[J]. Journal of Performance of Constructed Facilities,1995,9(1):57-74.
    [2]
    吴君涛,王奎华,肖偲,等. 弹性支承桩周围土振动响应解析解及其波动规律研究[J]. 岩石力学与工程学报,2018,37(10):2384-2393.
    [3]
    王凤武,刘学冬. 无损检测技术在桥梁桩基检测中的运用分析[J]. 工程建设与设计,2024(2):161-163.
    [4]
    吴君涛,王奎华,高柳,等. 考虑桩身材料阻尼的桩基纵向振动积分变换解及其应用[J]. 岩石力学与工程学报,2017,36(9):2305-2312.
    [5]
    WU J T,WANG K H,GAO L,et al. Study on longitudinal vibration of a pile with variable sectional acoustic impedance by integral transformation[J]. Acta Geotechnica,2019,14(6):1857-1870.
    [6]
    梁道盛. 工程基桩检测方法对比[J]. 公路交通科技(应用技术版),2013,9(3):419-423.
    [7]
    王奎华,于喆,项驰轩,等. 一发三收式桩基声波透射检测技术及数值模拟分析[J]. 中国测试,2023,49(1):1-6.
    [8]
    黄亮. 基桩声波透射法CT技术的桩身缺陷识别研究[D]. 武汉:华中科技大学,2019.
    [9]
    王珂,吴君涛,于喆,等. 混凝土基桩超声波层析成像技术优化[J]. 浙江大学学报(工学版),2023,57(4):805-813.
    [10]
    王冠,陈尧,王志刚,等. 混凝土桩基SAGA层析成像算法实验研究[J]. 传感技术学报,2020,33(4):517-523.
    [11]
    于喆,王奎华,吴君涛. 基于改进克里金法的基桩缺陷空间插值研究[J]. 地基处理,2023,5(5):376-382,450.
    [12]
    叶启扬,吴君涛,易恩泽,等. 基于三维空间路径追踪的混凝土基桩层析成像技术研究[J/OL]. 土木工程学报,2025[ 2025-07-07]. https://doi.org/10.15951/j.tmgcxb.24070537.
    [13]
    刘珂铖,谢群,李雁军. 基于深度学习YOLOX算法的混凝土构件裂缝智能化检测方法[J]. 济南大学学报(自然科学版),2024,38(3):341-349.
    [14]
    于鸣,向广德,于金生. 基于深度学习的道路损坏检测算法研究[J/OL]. 哈尔滨理工大学学报,2025[ 2025-07-07]. http://kns.cnki.net/kcms/detail/23.1404.N.20240407.1334.023.html.
    [15]
    仲伟峰,弓越,刘杰. 改进YOLOv5算法的卡通动漫人物脸部检测方法[J/OL]. 哈尔滨理工大学学报,2025[ 2025-07-07]. http://kns.cnki.net/kcms/detail/23.1404.N.20240621.1343.010.html.
    [16]
    ZHAO W,WANG H,GEMMEKE H,et al. Ultrasound transmission tomography image reconstruction with a fully convolutional neural network[J]. Physics in Medicine& Biology,2020,65(23),235021.
    [17]
    尹宝才,王文通,王立春. 深度学习研究综述[J]. 北京工业大学学报,2015,41(1):48-59.
    [18]
    HUANG J T,LI J,GONG Y. An analysis of convolutional neural networks for speech recognition[C]// IEEE International Conference on Acoustics. 2015.
    [19]
    刘聪然. 混凝土超声波层析成像正反演方法数值研究[D]. 武汉:武汉理工大学,2016.
    [20]
    MING J,GE W. Convergence of the simultaneous algebraic reconstruction technique(SART)[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society,2001,1(8),957961.
    [21]
    BOWMAN A W,AZZALINI A. Applied smoothing techniques for data analysis[M]. New York:Oxford University Press Incorporated,1997.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (79) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return