Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 55 Issue 5
May  2025
Turn off MathJax
Article Contents
ZHAO Yanru, GUAN He, WANG Xiaoyong, SHI Jinna. Study on Carbon Absorption Capacity and Pore Structure Evolution of Concrete Under Bending Load[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(5): 292-301. doi: 10.3724/j.gyjzG24122004
Citation: ZHAO Yanru, GUAN He, WANG Xiaoyong, SHI Jinna. Study on Carbon Absorption Capacity and Pore Structure Evolution of Concrete Under Bending Load[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(5): 292-301. doi: 10.3724/j.gyjzG24122004

Study on Carbon Absorption Capacity and Pore Structure Evolution of Concrete Under Bending Load

doi: 10.3724/j.gyjzG24122004
  • Received Date: 2024-12-20
    Available Online: 2025-07-15
  • In order to study the carbon absorption capacity of concrete under load, X-ray diffraction(XRD), therrmogravimetry(TG) and mercury intrusion porosimetry(MIP) were used to explain the influence of different carbonization treatment time and load level on the mechanics and carbon absorption capacity of concrete.The grey entropy analysis method was used to analyze the effect of different pore structures on the CO2 uptake of concrete. The results show that the CO2 uptake in the compressive zone of concrete under different load levels increases first and then flat with the increase of carbonization time.In the early stage of carbonization treatment, the number of the most probable pore size and macropores of concrete increased, and the CO2 uptake increases. In the middle stage of carbonization treatment, the most probable pore size decreases, and the CO2 uptake tends to be gentle. In the later stage of carbonization treatment, the porosity decreases, the pore tortuosity increases, and the CO2 uptake tends to be gentle. The order of influence on the CO2 uptake of concrete is pore tortuosity > most probable pore size > porosity. When the concrete under the combined action of load and carbonization treatment is at a higher load level, the connectivity of concrete pores and the amount of CO2 uptake increase. The number of large pores in the compressive zone of concrete under 60 % load level increases with the increase of carbonization treatment time, and its carbon absorption capacity is the best. The order of influence on the CO2 uptake of concrete is macropore > large pores > gelpores > medium pores.
  • loading
  • [1]
    巴明芳,张丹蕾,赵启俊,等. 碳化与氯盐复合作用下硫氧镁胶凝材料的护筋性[J]. 建筑材料学报,2021,24(5):946-951.
    [2]
    李晓珍,柳俊哲,闫加利,等. 碳化与氯盐对混凝土孔溶液中钢筋钝化的影响[J]. 建筑材料学报,2020,23(1):224-229.
    [3]
    SHI C J,LI Y K,ZHANG J K,et al. Performance enhancement of recycled concrete aggregate:a review[J]. Journal of Cleaner Production,2016,112:466-472.
    [4]
    ZHANG D,GHOULEH Z,SHAO Y X,Review on carbonation curing of cement-based materials[J]. Journal of CO2 Utilization,2017,21:119-131.
    [5]
    ASHRAF W. Carbonation of cement-based materials:challenges and opportunities[J]. Construction and Building Materials,2016,120:558-570.
    [6]
    唐官保,姚燕,王玲,等. 应力作用下混凝土碳化深度预测模型[J]. 建筑材料学报,2020,23(2):304-308.
    [7]
    金祖权,孙伟,张云升,等. 荷载作用下混凝土的碳化深度[J]. 建筑材料学报,2005,8(2):179-183.
    [8]
    李轲楠. 服役混凝土抗渗透性与抗碳化性的研究[D]. 南昌:南昌大学,2012.
    [9]
    涂永明,吕志涛. 应力状态下混凝土的碳化试验研究[J]. 东南大学学报(自然科学版),2003(5):573-576.
    [10]
    万小梅. 力学荷载及环境复合因素作用下混凝土结构劣化机理研究[D]. 西安:西安建筑科技大学,2011.
    [11]
    张云升,孙伟,陈树东,等. 弯拉应力作用下粉煤灰混凝土的1D和2D碳化[J]. 东南大学学报(自然科学版),2007(1):118

    -122.
    [12]
    迟培云,梁永峰,于素健. 提高混凝土耐久性的技术途径[J]. 混凝土,2001(8):12-15.
    [13]
    DOERR B A. Chemical changes in concrete due to the ingress of aggressive species[J]. Cement and Concrete Research,2000,30(3):411-418.
    [14]
    GLASSER F P,MARCHAND J,SAMSON E. Durability of concrete-degradation phenomena involving detrimental chemical reactions[J]. Cement& Concrete Research,2008,38(2):226-246.
    [15]
    张平,王曙光,韩建德,等. 静力荷载作用下混凝土抗碳化性能及微观结构演化[J]. 混凝土,2017(10):45-51.
    [16]
    黄浩. 基于水化惰性胶凝材料的CO2矿化养护建材机制研究[D]. 杭州:浙江大学,2019.
    [17]
    钱觉时,别安涛,李昕成. 水泥混凝土中MgO来源与作用的研究进展[J]. 材料导报,2010,24(11):128-131.
    [18]
    SEONHYEOK K,JOONHO S,YOON H N,et al. Exploration of effects of CO2 exposure on the NOx-removal performance of TiO2-incorporated Portland cement evaluated via microstructural and morphological investigation[J]. Journal of Building Engineering,2022,45,103609.
    [19]
    CARLOS M,VITO F,MIRIAN V L. Modification of CO2 capture and pore structure of hardened cement paste made with nano-TiO2 addition:Influence of water-to-cement ratio and CO2 exposure age[J]. Construction and Building Materials,2021,275,122131.
    [20]
    韩建德,潘钢华,孙伟,等. 荷载与碳化耦合因素作用下混凝土的耐久性研究进展[J]. 材料导报,2011,25(增刊1):467-469,473.
    [21]
    SUN M,ZOU C Y,XIN D B. Pore structure evolution mechanism of cement mortar containing diatomite subjected to freeze-thaw cycles by multifractal analysis[J]. Cement and Concrete Composites,2020,114,103731.
    [22]
    赵燕茹,刘明,王磊,等. 碳化高温后普通混凝土抗压强度及孔结构演化规律[J]. 材料导报,2022,36(19):110-117.
    [23]
    苗连娟. 混凝土微观孔结构与双重孔隙介质渗透率模型[D]. 哈尔滨:哈尔滨工业大学,2019.
    [24]
    张丰,莫立武,邓敏,等. 碳化对钢渣-水泥-CaO-MgO砂浆强度和微观结构的影响[J]. 建筑材料学报,2017,20(6):854-861.
    [25]
    黄毓,逯静洲,王建伟,等. 轴压荷载作用下混凝土碳化特性试验研究[J]. 混凝土,2022(5):65-68.
    [26]
    SILVA D A,JOHN V M,RIBEIRO J L D,et al. Pore size distribution of hydrated cement pastes modified with polymers[J]. Cement and Concrete Research,2001,31(8):1177-1184.
    [27]
    牛建刚,牛荻涛,刘万里. 弯曲荷载影响粉煤灰混凝土碳化规律的研究[J]. 硅酸盐通报,2011,30(1):140-146.
    [28]
    杜栋,庞庆华. 现代综合评价方法与案列精选[M]. 北京:清华大学出版社,2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (41) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return