Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 54 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
PAN Zuanfeng, LI Haobo, PAN Haojin. Numerical Simulations of Nonlinear Creep of Concrete at Mesoscale[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 84-93. doi: 10.3724/j.gyjzG24093001
Citation: PAN Zuanfeng, LI Haobo, PAN Haojin. Numerical Simulations of Nonlinear Creep of Concrete at Mesoscale[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 84-93. doi: 10.3724/j.gyjzG24093001

Numerical Simulations of Nonlinear Creep of Concrete at Mesoscale

doi: 10.3724/j.gyjzG24093001
  • Received Date: 2024-09-30
    Available Online: 2024-11-06
  • In order to predict the nonlinear creep of concrete, it is necessary to establish a reasonable meso-finite element model of concrete. Base on the computational methods and principles of nonlinear creep in concrete, a mesoscale three-phase numerical model of concrete, which considering aggregates, cement paste, and the interfacial transition zone, was developed by using ABAQUS finite element analysis software through secondary development. The "aggregate scaling method" was proposed to generate a uniform interface transition zone in the two-phase finite element model, which was subsequently used to establish a three-phase model. By introducing strain increments caused by damage based on linear creep, the nonlinear creep effect was effectively simulated. The mesoscale three-phase numerical model of concrete successfully simulated the complex mesoscale structure of concrete and computed creep behavior by using recursive formulas, demonstrating good performance in simulating strain changes in concrete under sustained loads. Finally, the accuracy of the model was validated through existing creep test data from concrete cylindrical and prismatic specimens.
  • loading
  • [1]
    过镇海, 时旭东. 钢筋混凝土原理和分析 [M]. 北京:清华大学出版社有限公司, 2003.
    [2]
    龚洛书, 惠满印, 杨蓓. 砼收缩与徐变的实用数学表达式 [J]. 建筑结构学报, 1988 (5): 37-42.
    [3]
    KIM S M, ABU AL-RUB R K. Meso-scale computational modeling of the plastic-damage response of cementitious composites [J]. Cement and Concrete Research, 2011, 41(3): 339-358.
    [4]
    AYDIN A C, ARSLAN A, GüL R. Mesoscale simulation of cement based materials’ time-dependent behavior [J]. Computational Materials Science, 2007, 41(1): 20-26.
    [5]
    HUBLER M H, WENDNER R, BAZANT Z P. Comprehensive database for concrete creep and shrinkage: analysis and recommendations for testing and recording [J]. ACI Materials Journal, 2015, 112(4): 547-558.
    [6]
    HAVLÁSEK P, JIRÁSEK M. Multiscale modeling of drying shrinkage and creep of concrete [J]. Cement & Concrete Research, 2016,85:55-74.
    [7]
    王岩. 细观尺度下不同应力水平作用的高强混凝土徐变过程数值模拟[D]. 重庆:重庆交通大学, 2016.
    [8]
    LAVERGNE F, SAB K, SANAHUJA J, et al. Investigation of the effect of aggregates’ morphology on concrete creep properties by numerical simulations [J]. Cement & Concrete Research, 2015, 71: 14-28.
    [9]
    LI S G, LI Q B. Method of meshing ITZ structure in 3D meso-level finite element analysis for concrete [J]. Finite Elements in Analysis and Design, 2015, 93: 96-106.
    [10]
    WANG Y, XU Q, CHEN S. Approaches of concrete creep using mesomechanics: numerical simulation and predictive model [J]. Modelling and Simulation in Materials Science and Engineering, 2019, 27(5), 055012.
    [11]
    张望喜, 谢宏涛, 王雄, 等. 基于ABAQUS考虑钢筋影响的混凝土构件收缩徐变分析 [J]. 重庆大学学报(自然科学版), 2019, 42(11): 64-78.
    [12]
    LUTZ M P, MONTEIRO P J, ZIMMERMAN R W. Inhomogeneous interfacial transition zone model for the bulk modulus of mortar [J]. Cement and Concrete Research, 1997, 27(7): 1113-1122.
    [13]
    NEVILLE A, DILGER W, BROOKS J. Creep of plain and structural concrete[M]. Lonodn:Construction Press, Longman Group Ltd,1981.
    [14]
    BAŽANT Z P, TABBARA M R, KAZEMI M T, et al. Random particle model for fracture of aggregate or fiber composites [J]. Journal of Engineering Mechanics, 1990, 116(8): 1686-1705.
    [15]
    MEHTA P K, MONTEIRO P J. Concrete: microstructure, properties, and materials [M]. New York:McGraw-Hill Education, 2014.
    [16]
    XIAO J, LI W, CORR D J, et al. Effects of interfacial transition zones on the stress–strain behavior of modeled recycled aggregate concrete [J]. Cement and Concrete Research, 2013, 52: 82-99.
    [17]
    XIAO J, LI W, SUN Z, et al. Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation [J]. Cement and Concrete Composites, 2013, 37(3): 276-92.
    [18]
    ZHU Z, CHEN H. Overestimation of ITZ thickness around regular polygon and ellipse aggregate [J]. Computers & Structures, 2017, 182: 205-218.
    [19]
    WANG Z, GU X, LIN F. Experimental study on mechanical performance of interface between mortar and aggregate in concrete [C]//Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments. Honolulu,Hawaii,USA:2010: 3529-3536.
    [20]
    朱伯芳. 混凝土结构徐变应力分析的隐式解法 [J]. 水利学报, 1983(5):40-46.
    [21]
    WRIGGERS P, MOFTAH S O. Mesoscale models for concrete: homogenisation and damage behaviour [J]. Finite Elements in Analysis and Design, 2006, 42(7): 623-636.
    [22]
    BARNES B D, DIAMOND S, DOLCH W L. Micromorphology of the interfacial zone around aggregates in Portland cement mortar [J]. Journal of the American Ceramic Society, 1979, 62(1/2): 21-24.
    [23]
    HENRY G R, STEVEN C L. Thirteen years of deformations in Water Tower Place [J]. ACI Structural Journal, 1989, 86(2):182-191.
    [24]
    RADOVITZKY R, ORTIZ M. Tetrahedral mesh generation based on node insertion in crystal lattice arrangements and advancing-front-Delaunay triangulation [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 187(3/4): 543-569.
    [25]
    PARTHASARATHY V, GRAICHEN C, HATHAWAY A. A comparison of tetrahedron quality measures [J]. Finite Elements in Analysis and Design, 1994, 15(3): 255-261.
    [26]
    MANZOLI O L, GAMINO A L, RODRIGUES E, et al. Modeling of interfaces in two-dimensional problems using solid finite elements with high aspect ratio [J]. Computers & Structures, 2012, 94: 70-82.
    [27]
    MANZOLI O L, MAEDO M A, BITENCOURT JR L A, et al. On the use of finite elements with a high aspect ratio for modeling cracks in quasi-brittle materials [J]. Engineering Fracture Mechanics, 2016, 153: 151-170.
    [28]
    庄茁. 基于ABAQUS的有限元分析和应用 [M]. 北京:清华大学出版社,2009.
    [29]
    HERRERA R, KINRADE S D, CATALAN L J J. A comparison of methods for determining carbonation depth in fly ash-blended cement mortars [J]. ACI Materials Journal, 2015, 112(2):287-294.
    [30]
    GAMBLE B, THOMASS L. The creep of concrete subject to varying stress[C]//Proceedings of the Proceedings of the Australian Conference on the Mechanics of Structures and Materials. Adelaide Australia: 1969.
    [31]
    L'HERMITE R G, MAMILLAN M, LEFèVRE C. Nouveax résultats de recherches sur la déformation et la rupture du béton [J]. Matériaux et Constructions,1965,2:35-41.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (19) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return