Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
CAO Baoya, YANG Bingyi, LI Aiqun, DENG Yang, DING Youliang. Wind-Induced Fatigue Study of Bolted Flange Joints of Self-Standing Steel Chimneys[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(1): 75-85. doi: 10.3724/j.gyjzG24071501
Citation: CAO Baoya, YANG Bingyi, LI Aiqun, DENG Yang, DING Youliang. Wind-Induced Fatigue Study of Bolted Flange Joints of Self-Standing Steel Chimneys[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(1): 75-85. doi: 10.3724/j.gyjzG24071501

Wind-Induced Fatigue Study of Bolted Flange Joints of Self-Standing Steel Chimneys

doi: 10.3724/j.gyjzG24071501
  • Received Date: 2024-07-15
    Available Online: 2025-03-28
  • The chimney of the towering steel structure is often connected by bolted flange joints, which are prone to fatigue cracks under wind loads. Firstly, an 80 m self-standing steel chimney girder-solid multi-scale finite element model was established based on ABAQUS. The wind field was simulated by MATLAB, and the fatigue life of the bolt was calculated based on the rainflow counting method and the Miner cumulative damage criterion. The influence of bolt preload on the fatigue life was discussed, and the relation curve between bolt preload and fatigue life was fitted. The fatigue life of bolted flange joints under the action of typhoons of different intensities was compared and analyzed. Tuned Liquid Damper (TLD) was designed and installed, and the effects of TLD damping on the fatigue life of steel chimneys were analyzed. The results showed that under the action of wind loads, the life of the bolted joint at the variable section was the lowest, and the life of the bolted joint at the bottom of the steel chimney of the project was the second. The fatigue life of bolted flange joints significantly decreased with the decrease of bolt preload.When the preload was lost by 40%, the fatigue life of bolts at the variable section under normal climate wind would be lower than the design service life of 50 years. The TLD damping design installed a total of 48 circular water tanks with 6 layers, which could effectively prolong the fatigue life of bolts. Under ordinary typhoons, after installing TLD, the fatigue life of bolt joints at the variable section of the steel chimney could be extended from 32 years to 54 years. When the bolt preload was lost to different degrees under typhoons, the fatigue life of bolts could increase by 50% after installing TLD.
  • [1]
    陈鑫, 李爱群, 王泳, 等. 自立式高耸结构风振控制方法研究[J]. 振动与冲击, 2015, 34(7): 149-155

    ,177.
    [2]
    KAWECKI J, URAN'SKI J A. Cross-wind vibrations of steel chimneys: a new case history [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2007, 95(9): 1166-1175.
    [3]
    RINCÓN-CASADO A, JULIÁ-LERMA J M, GARCÍA-VALLEJO D, et al. Experimental estimation of the residual fatigue life of in-service wind turbine bolts[J]. Engineering Failure Analysis, 2022, 141, 106658.
    [4]
    YU Z, SUN P, WANG D. Fatigue life prediction for flange connecting bolts of wind turbine tower[J]. Journal of Shanghai Jiaotong University (Science), 2020, 25: 526-530.
    [5]
    FU B, ZHAO J B, LI B Q, et al. Fatigue reliability analysis of wind turbine tower under random wind load[J]. Structural Safety, 2020, 87: 1-10.
    [6]
    董新胜, 黄耀德, 管品武, 等. 变电站避雷针法兰盘高强螺栓风振疲劳性能分析[J]. 水利与建筑工程学报, 2019, 17(3): 99-103.
    [7]
    穆国煜. 避雷针结构法兰盘高强螺栓风致疲劳研究[D].郑州:郑州大学, 2018.
    [8]
    史佩武. 基于名义应力法的工业钢烟囱风致疲劳损伤评估[J]. 江苏建筑, 2020 (2): 32-37.
    [9]
    KARLSEN O, LEMU H G. Comparative study on loosening of anti-loosening bolt and standard bolt system[J]. Engineering Failure Analysis, 2022, 140:1-14.
    [10]
    HE X L, SHE T L. A new identification method for bolt looseness in wind turbine towers[J]. Shock and Vibration, 2019(1): 1-10.
    [11]
    LI Y, LIU Z, WANG Y, et al. Experimental study on behavior of time-related preload relaxation for bolted joints subjected to vibration in directions [J]. Tribology International, 2020, 142, 106005.
    [12]
    AJAEI B B, SOYOZ S. Effects of preload deficiency on fatigue demands of wind turbine tower bolts[J]. Journal of Constructional Steel Research, 2020, 166: 1-10.
    [13]
    王永和. 风力发电机螺栓预紧力松弛及预测方法研究[D].兰州:兰州理工大学, 2022.
    [14]
    焦晋峰, 刘展翔, 刘丹,等. 预紧力缺失对8.8级M24高强度螺栓常幅疲劳性能影响分析[J]. 西安建筑科技大学学报(自然科学版), 2022, 54

    (1): 35-44.
    [15]
    陆越. 风力发电机塔架风致疲劳损伤的TLD控制技术[D]. 苏州:苏州科技大学, 2018.
    [16]
    LI Y F, LI S Y, SUN B S, et al. Effectiveness of a tiny tuned liquid damper on mitigating wind-induced responses of cylindrical solar tower based on elastic wind tunnel tests[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 208: 1-9.
    [17]
    YEH P H, CHUNG S H, CHEN B F. Multiple TLDs on motion reduction control of the offshore wind turbines[J]. Journal of Marine Science and Engineering, 2020, 8(6):1-27.
    [18]
    LI Y, LIU X L, YIN J T, et al. Parameter study of tunned liquid damper (TLD) on wind-induced vibration control of high-rise buildings[J]. Structures, 2024, 64: 1-14.
    [19]
    饶同. 高层建筑设置常用TLD系统的风振控制效率对比分析[D]. 广州:广州大学, 2019.
    [20]
    苏玉枫. 利用TLD进行高层建筑风振控制的研究[D]. 重庆:重庆大学, 2013.
    [21]
    陈鑫, 李爱群, 王泳, 等. 高耸钢烟囱环形TLD减振试验与数值模拟[J]. 建筑结构学报, 2015, 36(1):37-43.
    [22]
    中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012[S]. 北京: 中国建筑工业出版社,2012.
    [23]
    时明强. 超高耸烟囱结构关键技术研究[D]. 武汉:华中科技大学, 2011.
    [24]
    王修琼, 崔剑峰. Davenport谱中系数K的计算公式及其工程应用[J]. 同济大学学报(自然科学版), 2002, 30(7):849-852.
    [25]
    刘锡良,周颖. 风荷载的几种模拟方法[J]. 工业建筑, 2005, 35(5): 81-84.
    [26]
    付兴, 李宏男. 良态风及台风不同风谱对结构风雨振反应对比分析[J]. 振动与冲击, 2015, 34(11): 7-10.
    [27]
    中华人民共和国住房和城乡建设部. 钢结构高强度螺栓连接技术规程: JGJ 82—2011[S]. 北京:中国建筑工业出版社, 2011.
    [28]
    European Committee for Standardization. Eurocode 3: design of steel structures-part 1-9: fatigue[S]. Berlin: Ernst & Sohn, 2005.
    [29]
    黄国胜, 刘树堂, 韩林田. 基于石沅台风谱的输电塔风场数值模拟[J]. 华南地震, 2014, 34(增刊1): 71-75.
    [30]
    瞿伟廉, 陶牟华, CHANG C C. 五种被动动力减振器对高层建筑脉动风振反应控制的实用设计方法[J]. 建筑结构学报, 2001, 22(2): 29-34

    ,56.
    [31]
    柳国环, 李宏男, 国巍. TLD-结构体系转化为TMD-结构体系的减振计算方法[J]. 工程力学, 2011, 28(5): 31-34.
    [32]
    中华人民共和国住房和城乡建设部. 烟囱工程技术标准: GB/T 50051—2021[S]. 北京: 中国计划出版社, 2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (56) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return