Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Xinjie, WANG Weiyong. Research on Mechanical Properties of Concrete-Filled Double-Skin Circular Steel Tubular Columns Stiffened by Perforated Steel Plates Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 1-12. doi: 10.3724/j.gyjzG23071702
Citation: WANG Lei, WU Yihui, JIANG Mengyao, SHU Qianjin. Research on the Bearing Capacity of Concrete-Filled Double-Skin Circular Aluminum Tube Short Columns Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(9): 149-155. doi: 10.3724/j.gyjzG24050615

Research on the Bearing Capacity of Concrete-Filled Double-Skin Circular Aluminum Tube Short Columns Under Axial Compression

doi: 10.3724/j.gyjzG24050615
  • Received Date: 2024-05-06
    Available Online: 2024-10-18
  • Concrete-filled double-skin circular aluminum tube short columns consisting of PVC tube inside and aluminum alloy tube outside was taken as the research object, considering two variables of PVC tube diameter and aluminum tube wall thickness, axial compression test research and corresponding finite element simulation analysis on the concrete-filled double-skin circular aluminum tube short columns were carried out. The failure modes, ultimate bearing capacities and load-strain relation of the concrete-filled double-skin circular aluminum tube short column specimens were obtained. The feasibility of using existing calculation methods for the bearing capacity of steel tube concrete short columns under axial compression to predict the bearing capacity of concrete-filled double-skin circular aluminum tube short columns were compared and analyzed. The research results indicated that the failure mode of concrete-filled double-skin circular aluminum tube short columns exhibited bulging failure. When the diameter of the PVC tube remained constant, the ultimate bearing capacity of the specimen increased by 46.6%-96.6% with the increase of the wall thickness of the aluminum tube. When the thickness of the aluminum tube remained unchanged, the bearing capacity of the specimen decreased by 8.3%-28.4% with the increase of the diameter of the PVC tube. The accuracy of the projected results of the existing European EC 4 code and the United States AISC code for CFST column bearing capacity was affected by the wall thickness of the aluminum tube and the result were too conservative. The predicted data stability of CCES standard for specimens with different wall thicknesses was insufficient. The method proposed by scholar Tao Zhong showed the best predicted results and data stability.Finally, a suggestion was put forward for the calculation of the bearing capacity of concrete-filled double-skin circular aluminum tube short columns under axial compression.
  • [1]
    钟善桐. 钢管混凝土结构 [M].3版. 北京: 清华大学出版社, 2003.
    [2]
    HUANG H, HAN L H,ZHONG T, et al. Analytical behavior of concrete-filled double skin steel tubular (CFDST) stub columns [J]. Journal of Constructional Steel Research, 2010, 66(4): 542-555.
    [3]
    JING Y, CHEN Y, HAN L H. Research on bearing capacity of short concrete filled double skin steel tubes columns under axial compression [J]. Advanced Materials Research, 2011, 1068 (338):2154-2157.
    [4]
    HASSANEIN M F, KHAROOB O F. Compressive strength of circular concrete-filled double skin tubular short columns [J]. Thin-Walled Structures, 2014, 77(4): 165-173.
    [5]
    UENAKA K, HAYAMI M, KITOH H et al. Experimental study on concrete double tubular steel columns under axial loading[J]. Advances in Structure, 2003, 15(5): 877-882.
    [6]
    UENAKA K, KITOH H, SONODA K. Concrete filled double skin circular stub columns under compression[J]. Thin-Walled Structures, 2009, 47(1):19-24.
    [7]
    ZHAO X L, GRZEBIETA R. Strength and ductility of concrete filled double skin (SHS inner and SHS outer) tubes [J]. Thin-Walled Structures, 2002, 40(2): 199-213.
    [8]
    陶忠, 韩林海,黄宏.方中空夹层钢管混凝土偏心受压柱力学性能的研究[J].土木工程学报, 2003,36 (2): 33-40

    ,51.
    [9]
    陶忠, 韩林海,黄宏. 圆中空夹层CFST柱力学性能研究[J].土木工程学报, 2004, 37(10): 41-51.
    [10]
    YUAN W, YANG J. Experimental and numerical studies of short concrete-filled double skin composite tube columns under axially compressive loads[J]. Journal of Constructional Steel Research, 2013, 80: 23-31.
    [11]
    杨俊杰, 戚晓锴.八边形中空夹层CFST柱PVC-U内管的性能研究[J]. 浙江工业大学学报, 2013, 41(6):672-676.
    [12]
    黄宏,朱彦奇,郭晓宇,等. 塑料内管的方中空夹层CFST柱轴压性能研究 [J]. 应用力学学报, 2017, 34(1): 88-94

    ,198.
    [13]
    韩林海. 钢管混凝土结构: 理论与实践[M].北京:科学出版社, 2007.
    [14]
    曾翔, 吴晚博, 霍静思, 等. 圆铝合金管混凝土短柱轴心受压承载力研究 [J]. 工程力学, 2021, 38(2): 52-60.
    [15]
    ZHOU F, YOUNG B. Concrete-filled aluminum circular hollow section column tests [J]. Thin-Walled Structures, 2009, 47(11): 1272-1280.
    [16]
    WANG F C, ZHAO H Y, HAN L H. Analytical behavior of concrete-filled aluminum tubular stub columns under axial compression [J]. Thin-Walled Structures, 2019, 140: 21-30.
    [17]
    PATEL V I, LIANG Q Q, HADI M N S. Numerical simulations of circular high strength concrete-filled aluminum tubular short columns incorporating new concrete confinement model [J]. Thin-Walled Structures, 2020, 147,106492.
    [18]
    MOON J, KIM J J, LEE T H, et al. Prediction of axial load capacity of stub circular concrete-filled steel tube using fuzzy logic [J]. Journal of Constructional Steel Research, 2014,101: 184-191.
    [19]
    查晓雄, 宫永丽. 新型金属管混凝土柱力学性能研究I: 轴压短柱强度承载力的研究[J]. 建筑钢结构进展, 2012,14 (3): 12-18

    , 35.
    [20]
    JIANG M Y, SHU Q J, LIU P X, et al. Testing and numerical simulation of concrete-filled 6061-T6 aluminum tubular stub columns[J]. Structures, 2024, 60,105855.
    [21]
    QI X M, SHU Q J,WANG F Y, et al. Experimental study on eccentric compressive behaviors of 6061-T6 aluminum tubular long columns filled with concrete[J/OL]. Engineering Structures, 2024, 299[2023-12-16].https://doi.org/10.1016/j.engstruct.2023.117040.
    [22]
    中华人民共和国住房和城乡建设部.钢管混凝土结构技术规范:GB 50936—2014[S].北京:中国建筑工业出版社,2014.
    [23]
    全国标准化技术委员会. 金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021[S].北京: 中国标准出版社, 2021.
    [24]
    中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准:GB/T 50081—2019[S].北京:中国建筑工业出版社,2019.
    [25]
    中国土木工程学会.中空夹层钢管混凝土结构技术规程:T/CCES 7—2020[S].北京:中国建筑工业出版社,2020.
    [26]
    American Institute of Steel Construction (AISC).Specification for structural steel buildings: ANSI/AISC 360-05 [S].Chicago:AISC,2005.
    [27]
    European Committee for Standardization.Eurocode 4: design of composite steel and concrete structure, part 1.1: general rules fire design and rules for building[S]. Brussels:European Committee for Standardization, 2005.
  • Relative Articles

    [1]YANG Tao, SHENG Zhicheng, WANG Hengdong. ONE DIMENSIONAL ANALYTICAL SOLUTION FOR CONSOLIDATION OF A COMPOSITE GROUND WITH T-SHAPED DEEP CEMENT MIXING COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 102-108. doi: 10.13204/j.gyjz202003017
    [3]Xu Youjun Ding Yahui Liu Xinmei, . CALCULATION OF UNLOADING ADDITIONAL STRESS AT ANY POINT IN THE INTERIOR OF SEMI-INFINITE BODY DURING THE OVERPASS SUBWAY PROJECT[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(6): 110-117. doi: 10.13204/j.gyjz201506022
    [4]Yang Tao, Wan Yihao, He Desheng. STATE THE ART OF CONSOLIDATION THEORY FOR COMPOSITE GROUND[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(1): 152-155. doi: 10.13204/j.gyjz201501031
    [5]Deng Zongwei, Zhu Zhixiang, Zeng Xiangjun, Kong Gangqiang. STUDY OF RHEOLOGICAL PROPERTIES OF THE LACUSTRINE SOFT SOIL UNDER DIFFERENT STRESS LEVEL[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(06): 67-72. doi: 10.13204/j.gyjz201406016
    [6]Wang Juan, Zhao Junhai, Zhu Qian, Zhang Zhichao, Liu Qi. AXIAL BEARING CAPACITY OF FRP-CONCRETE-STEEL DOUBLE-SKIN TUBULAR SHORT COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(11): 130-133. doi: 10.13204/j.gyjz201111028
    [7]LüWenzhi, Li Chunzhi, Yu Jianlin, Liu Chao. STUDY ON THE SETTLEMENT LAW OF THE COMPOSITE GROUND UNDER A FLEXIBLE FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(9): 58-65,57. doi: 10.13204/j.gyjz201009016
    [8]Wu Ruiqian, Xie Kanghe, Shen Jianming. ANALYTICAL SOLUTIONS OF ONE-DIMENSIONAL THERMAL CONSOLIDATION OF SATURATED SOIL UNDER PERIODIC FLUCTUATION OF SURFACE TEMPERATURE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(8): 86-90. doi: 10.13204/j.gyjz201008020
    [9]Shi Ping, He Shixiu, Fan Dongkai. TEST STUDY OF REAL THREE AXLE ON CROSSRANGE UNLOADING DEFORMATION OF CLAY[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(6): 88-91,104. doi: 10.13204/j.gyjz200906021
    [10]LüWenzhi, Yu Jianlin, Zheng Wei, Gong Xiaonan, Jing Zijing. STUDY OF ANALYTIC SOLUTION OF COMPOSITE GROUND UNDER FLEXIBLE FOUNDATION BASED ON SUPER-SUB STRUCTURE INTERACTION[J]. INDUSTRIAL CONSTRUCTION, 2009, 39(4): 77-83. doi: 10.13204/j.gyjz200904018
    [11]He Yaping, Zhuang Zuocheng, Han Tianwei, Yu Changhai, Gao Jianzhong, Dong Lilei. DESIGN OF COMPOSITE PILE OF PRESTRESSED PIPE PILE AND CAISSON PILE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(9): 119-121. doi: 10.13204/j.gyjz200809034
    [12]Zhang Yanmei, Zhang Xudong, Zhang Hongru. CALCULATION METHOD OF GENERATION AND DISSIPATION OF EXCESS PORE WATER PRESSURE IN STONE COLUMNS FOUNDATION[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(3): 56-59,94. doi: 10.13204/j.gyjz200703015
    [13]Jiang Li, Chen Lun. ANALYTICAL SOLUTION FOR THE LOAD-DISPLACEMENT RELATIONSHIP OF PULLOUT DX PILE BASED ON ELASTIC THEORY[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(5): 65-70. doi: 10.13204/j.gyjz200605018
    [14]Jiang Jianping, Gao Guangyun. STUDY ON BEARING CAPACITY PER VOLUME OF BORED-CAST-PLACE PILES[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(9): 43-45.
    [15]Yao Yong, Wang Ruheng, Lei Jinsong. ANALYSIS OF PRESSURE GROUTING AT PILE TIP OF BORED PILES IN PEBBLE STRATUM AND ITS BEARING CHARACTERISTICS[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(7): 59-63. doi: 10.13204/j.gyjz200507017
    [16]Yang Hua, Yang Min, Zhou Hongbo. AN ANALYTICAL SOLUTION FOR SINGLE PILE IN NON-HOMOGENEOUS SOIL CONSIDERING SOIL HARDENING BEHAVIOR OF PILE TIP[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(3): 46-48,55. doi: 10.13204/j.gyjz200503017
    [17]Liu Ming, Huang Maosong, Ma Jinrong. TESTING STUDY ON THE CLAY SOIL'S UNLOADING PROPERTIES UNDER HIGH STRESS[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(8): 71-74. doi: 10.13204/j.gyjz200508018
    [18]Zeng Jie, Yu Xinchun, Yu Fusheng. STRENGTHENING DESIGN OF OFFICE BUILDINGcS ARCHIVES FLOOR STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(6): 15-17,27. doi: 10.13204/j.gyjz200406006
    [19]Yin Zifeng, Jin Xiangwu. ANALYSIS AND TREATMENT OF A LOCAL SLIDING ACCIDENT OF NO.3 RETAINING WALL OF A PROJECT[J]. INDUSTRIAL CONSTRUCTION, 2004, 34(2): 88-90. doi: 10.13204/j.gyjz200402026
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.510
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 6.1 %FULLTEXT: 6.1 %META: 89.4 %META: 89.4 %PDF: 4.5 %PDF: 4.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 19.7 %其他: 19.7 %北京: 10.6 %北京: 10.6 %台州: 3.0 %台州: 3.0 %大连: 1.5 %大连: 1.5 %宣城: 1.5 %宣城: 1.5 %张家口: 1.5 %张家口: 1.5 %昆明: 1.5 %昆明: 1.5 %朝阳: 1.5 %朝阳: 1.5 %杭州: 6.1 %杭州: 6.1 %漯河: 4.5 %漯河: 4.5 %石家庄: 3.0 %石家庄: 3.0 %芒廷维尤: 25.8 %芒廷维尤: 25.8 %芝加哥: 1.5 %芝加哥: 1.5 %西宁: 6.1 %西宁: 6.1 %西安: 3.0 %西安: 3.0 %运城: 7.6 %运城: 7.6 %长沙: 1.5 %长沙: 1.5 %其他北京台州大连宣城张家口昆明朝阳杭州漯河石家庄芒廷维尤芝加哥西宁西安运城长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (61) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return