Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHU Mao, GE Chunqing, BAN Yong, ZHOU Ningyuan, XU Kang, LI Jiping. Research on Urban Building Safety Monitoring Techniques Based on InSAR[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 51-57. doi: 10.3724/j.gyjzG23120809
Citation: YAN Dawei, XUE Weichen, JIANG Jiafei. A State-of-the-Art Review on Deformation Performance of Concrete Beams Prestressed with FRP Tendons Under Sustained Loading[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 1-12. doi: 10.3724/j.gyjzG24043001

A State-of-the-Art Review on Deformation Performance of Concrete Beams Prestressed with FRP Tendons Under Sustained Loading

doi: 10.3724/j.gyjzG24043001
  • Received Date: 2024-04-30
    Available Online: 2024-06-24
  • The serviceability of FRP prestressed concrete (FRP-PC) beams under sustained loading would be affected by the excessive long-term additional deflection, which is caused by the coupled effect of creep and relaxation of FRP tendons, and shrinkage and creep of concrete. A systematic review of the research progress on the long-term performance and design methods of FRP-PC beams was carried out. Firstly, the creep and relaxation properties of FRP tendons were introduced and the prediction methods were summarized. Secondly, the relevant results related to the past 20-year-research on the experiments of long-term performance of bonded prestressed concrete beams and externally prestressed concrete beams were concluded. The time-dependent finite element analysis method based on the age-adjusted effective modulus method (AEMM) or the integral-type creep model was summarized, and the corresponding parametric results were introduced. In addition, the similarities and differences of calculation theories and the simplified methods were analyzed. Finally, the future research on the long-term performance of FRP-PC beams was suggested.
  • [1]
    HOU B R, LI X G, MA X M, et al. The cost of corrosion in China [J]. npj Materials Degradation, 2017, 1(1): 1-10.
    [2]
    GUDONIS E, TIMINSKAS E, GRIBNIAK V, et al. Frp Reinforcement for Concrete Structures: State-of-the-Art Review of Application and Design [J]. Engineering Structures and Technologies, 2014, 5(4): 147-158.
    [3]
    ASKAR M K, HASSAN A F, AL-KAMAKI Y S S. Flexural and shear strengthening of reinforced concrete beams using FRP composites: A state of the art [J]. Case Studies in Construction Materials, 2022,17,e01189.
    [4]
    尹世平, 华云涛, 徐世烺. FRP配筋混凝土结构研究进展及其应用 [J]. 建筑结构学报, 2021, 42(1): 134-150.
    [5]
    RAFIEIZONOOZ M, KIM J-H J, VARAEE H, et al. Testing methods and design specifications for FRP-prestressed concrete members: A review of current practices and case studies [J]. Journal of Building Engineering, 2023, 73,106723.
    [6]
    ZDANOWICZ K, KOTYNIA R, MARX S. Prestressing concrete members with fibre-reinforced polymer reinforcement: State of research [J]. Structural Concrete, 2019, 20(3): 872-885.
    [7]
    董志强, 吴刚. FRP筋增强混凝土结构耐久性能研究进展 [J]. 土木工程学报, 2019, 52(10): 1-19

    ,29.
    [8]
    BANIBAYAT P, PATNAIK A. Creep rupture performance of basalt fiber-reinforced polymer bars [J]. Journal of Aerospace Engineering, 2015, 28(3),04014074.
    [9]
    FERGANI H, DI BENEDETTI M, OLLER C M, et al. Long-term performance of GFRP bars in concrete elements under sustained load and environmental actions [J]. Composite Structures, 2018, 190: 20-31.
    [10]
    TORRES L, MIAS C, TURON A, et al. A rational method to predict long-term deflections of FRP reinforced concrete members [J]. Engineering Structures, 2012, 40: 230-239.
    [11]
    MIAS C, TORRES L, GUADAGNINI M, et al. Short and long-term cracking behaviour of GFRP reinforced concrete beams [J]. Composites Part B:Engineering, 2015, 77: 223-231.
    [12]
    董志强, 吴刚. 基于试验数据分析的FRP筋混凝土受弯构件最大裂缝宽度计算方法 [J]. 土木工程学报, 2017, 50(10): 1-8.
    [13]
    RAO A S P, JAYARAMAN R. Creep and shrinkage analysis of partially prestressed concrete members [J]. Journal of Structural Engineering, 1989, 115(5): 1169-1189.
    [14]
    WEN Q J. Long-term effect analysis of prestressed concrete box-girder bridge widening [J]. Construction and Building Materials, 2011, 25(4): 1580-1586.
    [15]
    BISCHOFF P H. Deflection calculation of FRP reinforced concrete beams based on modifications to the existing Branson equation [J]. Journal of Composites for Construction, 2007, 11(1): 4-14.
    [16]
    JAKUBOVSKIS R, KAKLAUSKAS G, GRIBNIAK V, et al. Serviceability analysis of concrete beams with different arrangements of GFRP bars in the tensile zone [J/OL]. Journal of Composites for Construction, 2014, 18(5)[2014-02-03]. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000465.
    [17]
    DILGER W H. Creep analysis of prestressed concrete structures using creep-transformed section properties [J]. PCI Journal, 1982, 27(1): 98-118.
    [18]
    中华人民共和国住房和城乡建设部. 纤维增强复合材料筋混凝土桥梁技术标准: CJJ/T 280—2018[S]. 北京:中国建筑工业出版社, 2018.
    [19]
    American Concrete Institute (ACI). Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer(FRP) bars:ACI PRC-440.1-15 [S]. Farmington Hills:ACI, 2015.
    [20]
    American Concrete Institute (ACI). 440.4R-04: Prestressing concrete structures with FRP tendons[S]. Farmington Hills: ACI,2004.
    [21]
    Canadian Standards Association. Commentary on CSA S6: 19, Canadian Highway Bridge Design Code: 1488321604[S]. Toronto: CSA Group, 2019.
    [22]
    ZHAO J, MEI K, WU J. Long-term mechanical properties of FRP tendon-anchor systems: A review [J]. Construction and Building Materials, 2020, 230,117017.
    [23]
    D'ANTINO T, PISANI M A. Long-term behavior of GFRP reinforcing bars [J]. Composite Structures, 2019, 227,111283.
    [24]
    ESMAEILI Y, MOHAMED K, NEWHOOK J, et al. Assessment of creep rupture and long-term performance of GFRP bars subjected to different environmental exposure conditions under high sustained loads [J]. Construction and Building Materials, 2021, 300,124327.
    [25]
    NAJAFABADI E P, BAZLI M, ASHRAFI H, et al. Effect of applied stress and bar characteristics on the short-term creep behavior of FRP bars [J]. Construction and Building Materials, 2018, 171: 960-968.
    [26]
    SOKAIRGE H, ELGABBAS F, RASHAD A, et al. Long-term creep behavior of basalt fiber reinforced polymer bars [J]. Construction and Building Materials, 2020, 260,120437.
    [27]
    GUIMARAES, BURGOYNE. Creep behaviour of a parallel-lay aramid rope [J]. Journal of Materials Science, 1992,27:2473-2489.
    [28]
    CHAMBERS J J, BURGOYNE C J. An experimental investigation of the stressrupture behaviour of a parallel-lay aramid rope [J]. Journal of Materials Science, 1990,25:3723-3730.
    [29]
    YOUSSEF T, BENMOKRANE B. Creep behavior and tensile properties of GFRP bars under sustained service loads[J]. Special Publication, 2011, 275: 1-20.
    [30]
    BENMOKRANE B, BROWN V L, MOHAMED K, et al. Creep-rupture limit for GFRP bars subjected to sustained loads [J]. Journal of Composites for Construction, 2019, 23(6),06019001.
    [31]
    WANG X, SHI J, WU Z, et al. Creep strain control by pretension for basalt fiber-reinforced polymer tendon in civil applications [J]. Materials & Design, 2016, 89: 1270-1277.
    [32]
    SHI J, WANG X, WU Z, et al. Creep behavior enhancement of a basalt fiber-reinforced polymer tendon [J]. Construction and Building Materials, 2015, 94: 750-757.
    [33]
    SAADATMANESH H, TANNOUS F E. Relaxation, creep, and fatigue behavior of carbon fiber reinforced plastic tendons [J]. ACI Materials Journal, 1999, 96(2): 143-153.
    [34]
    WANG X, SHI J, LIU J, et al. Creep behavior of basalt fiber reinforced polymer tendons for prestressing application [J]. Materials & Design, 2014, 59: 558-564.
    [35]
    FINDLEY W N. Mechanism and mechanics of creep of plastics and stress relaxation and combined stress creep of plastics [M]. Providence: Division of Engineering, Brown University, 1960.
    [36]
    ZAWAM M, SOUDKI K, WEST J S. Effect of prestressing level on the time-dependent behavior of GFRP prestressed concrete beams [J]. Journal of Composites for Construction, 2017, 21(4),04017001.
    [37]
    中国治金建设协会. 纤维增强复合材料工程应用技术标准:GB 50608—2020[S]. 北京:中国计划出版社, 2020.
    [38]
    上海市住房和城乡建设管理委员会. 纤维增强复合材料筋混凝土结构技术标准:DG/TJ 08—2398[S]. 上海:同济大学出版社, 2022.
    [39]
    ZOU P X W. Long-term properties and transfer length of fiber-reinforced polymers [J]. Journal of Composites for Construction, 2003, 7(1): 10-19.
    [40]
    HIESCH D, PROSKE T, GRAUBNER C A, et al. Theoretical and experimental investigation of the time-dependent relaxation rates of GFRP and BFRP reinforcement bars [J]. Structural Concrete, 2023, 24(2): 2800-2816.
    [41]
    GRACE N F. Transfer length of CFRP/CFCC strands for double-T girders [J]. PCI Journal, 2000, 45(5): 110-126.
    [42]
    BRAIMAH A, GREEN M F, SOUDKI K A. Long-term behavior of CFRP prestressed concrete beams [J]. PCI Journal, 2003, 48(2):98-107.
    [43]
    ZOU P X W. Long-term deflection and cracking behavior of concrete beams prestressed with carbon fiber-reinforced polymer tendons [J]. Journal of Composites for Construction, 2003, 7(3): 187-193.
    [44]
    ZOU P X W. Theoretical study on short-term and long-term deflections of fiber reinforced polymer prestressed concrete beams [J]. Journal of Composites for Construction, 2003, 7(4): 285-291.
    [45]
    TERRASI G, MEIER U, AFFOLTER C. Long-term bending creep behavior of thin-walled CFRP tendon pretensioned spun concrete poles [J]. Polymers, 2014, 6(7): 2065-2081.
    [46]
    SOVJAK R, HAVLASEK P, VITEK J. Long-term behavior of concrete slabs prestressed with CFRP rebars subjected to four-point bending [J]. Construction and Building Materials, 2018, 188: 781-792.
    [47]
    PAVLOVIĆ A, DONCHEV T, PETKOVA D, et al. Short- and long-term prestress losses in basalt FRP prestressed concrete beams under sustained loading [J]. Journal of Composites for Construction, 2022, 26(6),04022069.
    [48]
    ZAWAM M, SOUDKI K, WEST J S. Factors affecting the time-dependent behaviour of GFRP prestressed concrete beams [J]. Journal of Building Engineering, 2019, 24,100715.
    [49]
    薛伟辰,刘婷,严大威,等. 有粘结预应力FRP筋混凝土梁长期性能试验研究 [R]. 上海:同济大学,2023.
    [50]
    XUE W C, LIU T. Time-dependent behavior of concrete beams externally prestressed with carbon fiber-reinforced polymer tendons for 1 000 days [J]. ACI Structural Journal, 2021, 118(3): 15-26.
    [51]
    曹国辉, 方志. 体外CFRP筋预应力混凝土箱梁长期受力性能试验研究 [J]. 土木工程学报, 2007(2): 18-24.
    [52]
    曹国辉, 方志. 体外配置 CFRP 筋预应力混凝土箱梁收缩徐变效应分析 [J]. 铁道学报, 2008, 30(6): 131-136.
    [53]
    李红芳. 配置体外CFRP预应力筋混凝土梁的受力性能研究 [D]. 长沙: 湖南大学, 2008.
    [54]
    SHI J, WANG X, WU Z, et al. Long-term mechanical behaviors of uncracked concrete beams prestressed with external basalt fiber-reinforced polymer tendons [J]. Engineering Structures, 2022, 262,114309.
    [55]
    ZAWAM M H M. Long-term behaviour of GFRP prestressed concrete beams [D]. Waterloo: The University of Waterloo, 2015.
    [56]
    BRAIMAH A, GREEN M F, SOUCLKI K A. Long-term behavior of CFRP prestressed concrete beams [J]. PCI Journal, 2003, 48(2): 98-107.
    [57]
    SAIEDI R, GREEN M F, FAM A. Behavior of CFRP-prestressed concrete beams under sustained load at low temperature [J]. Journal of Cold Regions Engineering, 2013, 27(1): 1-15.
    [58]
    薛伟辰,刘婷,严大威,等. 体外预应力FRP筋混凝土梁长期性能试验研究 [R]. 上海:同济大学, 2023.
    [59]
    BAZANT Z P. Prediction of concrete creep and shrinkage: past, present and future [J]. Nuclear Engineering and Design, 2001, 203(1): 27-38.
    [60]
    LOU T J, LOPES S M R, LOPES A V. Time-dependent behavior of concrete beams prestressed with bonded AFRP tendons [J]. Composites Part B: Engineering, 2016, 97: 1-8.
    [61]
    LOU T J, KARAVASILIS T L. Time-dependent assessment and deflection prediction of prestressed concrete beams with unbonded CFRP tendons [J]. Composite Structures, 2018, 194: 365-376.
    [62]
    刘婷. 新型预应力混凝土梁长期性能试验与理论研究 [D]. 上海: 同济大学, 2012.
    [63]
    LIU X, YU W, HUANG Y, et al. Long-term behaviour of recycled aggregate concrete beams prestressed with carbon fibre-reinforced polymer (CFRP) tendons [J]. Case Studies in Construction Materials, 2023, 18,e01785.
    [64]
    YOUAKIM S A, KARBHARI V M. An approach to determine long-term behavior of concrete members prestressed with FRP tendons [J]. Construction and Building Materials, 2007, 21(5): 1052-1060.
    [65]
    PÁEZ P M. A simplified approach to determine the prestress loss and time-dependent deflection in cracked prestressed concrete members, prestressed with fiber reinforced polymers or steel tendons [J]. Engineering Structures, 2023, 279,115523.
  • Relative Articles

    [1]WANG Qingli, ZHAO Jie, PENG Kuan. Tests on Mechanical Properties of Concrete-Filled Double-Skin Circular Steel Tubes Connected by Thread Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 13-22. doi: 10.3724/j.gyjzG22102805
    [2]LI Xinjie, WANG Weiyong. Research on Mechanical Properties of Concrete-Filled Double-Skin Circular Steel Tubular Columns Stiffened by Perforated Steel Plates Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 1-12. doi: 10.3724/j.gyjzG23071702
    [3]ZHANG Peng, YANG Siqi, DENG Yu, NI Miao, LING Daoyuan. Research on Mechanical Properties of Bamboo Winding Composite Pipe Reinforced Thin-Walled Steel Tube Composite Structures Under Axical Compression[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 62-68. doi: 10.3724/j.gyjzG23010801
    [4]YUE Xianghua, LONG Yueling, JIANG Yujie, LI Wentao, CAI Jian. Axial Compressive Performance and Constitutive Model of CFST Columns with an Inner FRP Tube[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 177-189. doi: 10.3724/j.gyjzG24041713
    [5]LIU Zidan, JIAO Wenshuai, CHENG Zhan, DU Guofeng. Research on the Axial Compression Behavior of Steel-Reinforced Ultra-High Performance Concrete-Filled Stainless Steel Tubular Columns[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 17-27. doi: 10.13204/j.gyjzG22072605
    [6]SUO Shanze, LI Rong. Experimental Research on Long-Term Performances of GFRP-Wound Pipes in Environments of Seawater Immersion and UV Radiation[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 223-230. doi: 10.13204/j.gyjzG22110402
    [7]MAO Zhijie, HUANG Liang, WU Yue, ZENG Linghong, DENG Peng, LI Yin. Research on Mechanical Properties of FRP-Constrained Geopolymeric Recycled Concrete Mixed with Tailing Powder Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(6): 209-217. doi: 10.13204/j.gyjzG22061601
    [8]LIU Cheng-lin, LI Feng, LI Ruo-yu. Axial Compression Experiments on Assembled Columns of CFRP Bilateral Flexible Flange Tubes[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 10-17. doi: 10.13204/j.gyjzg22011918
    [9]LIU Yangbing, WANG Shuang, LIU Jingbo, CAO Tianfeng. Experimental Research on Effect of Shear Connectors on Mechanical Properties of Steel-Plate Concrete Composite Walls Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(4): 98-106. doi: 10.13204/j.gyjzG20081704
    [10]MOU Kun-ting, WEI Yang, WANG Gao-fei, DONG Feng-hui, ZHENG Kai-qi. Mechanical Properties of Double-Tube Seawater and Sea Sand Concrete Columns with Built-in CFRP Tubes Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 1-9. doi: 10.13204/j.gyjzG22030410
    [11]CHEN Zongping, NING Fan. Experimental Research on Mechanical Properties of Concrete-filled Double-skin Square Steel Tubular (Oblique Inside and Straight Outside) Columns Under Axial Compression[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 8-16. doi: 10.13204/j.gyjzG20102106
    [12]CAI Yong, FENG Bing, CHEN Yong, CUI Xu, WANG Hao. NUMERICAL SIMULATIONS OF AXIAL COMPRESSIVE PROPERTIES FOR GFRP PIPES BY THE FILAMENT WINDING METHOD BASED ON THE PROGRESSIVE DAMAGE MODEL[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 194-202. doi: 10.13204/j.gyjzG20070105
    [13]LIU Lan, WANG Lijing, GUO Hong, CHENG Zhi. ANALYSIS ON BLAST-RESISTANT PERFORMANCES OF CONCRETE-FILLED STEEL TUBE COLUMNS CONFINED WITH FRP UNDER AXIAL COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(1): 179-186,193. doi: 10.13204/j.gyjzG20022803
    [14]CUI Yubo, WANG Jingfeng, SHEN Qihan, DING Zhaodong, LI Zhipeng. ANALYSIS AND DESIGN OF REINFORCED CONCRETE STUB COLUMNS WITH REBAR HRB635 UNDER AXIAL COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 1-10. doi: 10.13204/j.gyjzG20062707
    [15]PANG Rui, DING Shusu, WANG Lu, WANG Yixiao, WANG Wenjie. FINITE ELEMENT ANALYSIS OF AXIAL COMPRESSION PROPERTIES OF PREFABRICATED SRCT SHEAR WALL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 156-162. doi: 10.13204/j.gyjzG19112401
    [16]CHEN Zongping, ZHOU Ji. COMPARATIVE ANALYSIS OF AXIAL COMPRESSION PROPERTIES OF RECYCLED CONCRETE SHORT COLUMN FILLED CIRCULAR AND SQUARE STEEL TUBE AFTER BEING SUBJECTED TO HIGH TEMPERATURES AND WATER COOLING[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(2): 150-157. doi: 10.13204/j.gyjz202002023
    [17]ZHANG Zhengtao, REN Qingxin, REN Debin, YANG Juncai. STUDY ON AXIAL COMPRESSION PERFORMANCES OF CONCRETE-ENCASED CONCRETE-FILLED STEEL-TUBE STUB COLUMNS STRENGTHENED WITH EXTERNAL STEEL FRAMES AFTER EXPOSURE TO FIRE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(10): 187-193. doi: 10.13204/j.gyjzG20011609
    [18]Feng Peng, Tian Ye, Qin Zhaoping. STATIC AND DYNAMIC BEHAVIOR OF A TRUSS BRIDGE MADE OF FRP PULTRUDED PROFILES[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 36-41. doi: 10.13204/j.gyjz201306009
    [19]Wei Yang, Wu Gang, Wu Zhishen, Li Guofen. EXPERIMENTAL STUDY ON FRP-STEEL COMPOSITE TUBE CONCRETE FLEXURAL COMPONENTS[J]. INDUSTRIAL CONSTRUCTION, 2011, 41(11): 116-119,59. doi: 10.13204/j.gyjz201111025
    [20]Deng Zongcai, Kan Dexin, Du Xiuli, Li Jianhui, Wang Zuohu. EXPERIMENT ON BEHAVIOR OF CONCRETE SHORT COLUMNS CONFINED BY POLYETHYLENE FIBER SHEET UNDER AXIAL COMPRESSION[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(10): 69-72. doi: 10.13204/j.gyjz200710019
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 6.2 %FULLTEXT: 6.2 %META: 90.1 %META: 90.1 %PDF: 3.7 %PDF: 3.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.0 %其他: 16.0 %North Point: 1.2 %North Point: 1.2 %北京: 7.4 %北京: 7.4 %南昌: 3.7 %南昌: 3.7 %台州: 7.4 %台州: 7.4 %嘉兴: 1.2 %嘉兴: 1.2 %广州: 1.2 %广州: 1.2 %张家口: 6.2 %张家口: 6.2 %扬州: 1.2 %扬州: 1.2 %昆明: 1.2 %昆明: 1.2 %杭州: 4.9 %杭州: 4.9 %漯河: 2.5 %漯河: 2.5 %石家庄: 1.2 %石家庄: 1.2 %芒廷维尤: 22.2 %芒廷维尤: 22.2 %芝加哥: 1.2 %芝加哥: 1.2 %西宁: 2.5 %西宁: 2.5 %西安: 6.2 %西安: 6.2 %运城: 6.2 %运城: 6.2 %郑州: 1.2 %郑州: 1.2 %长沙: 1.2 %长沙: 1.2 %青岛: 1.2 %青岛: 1.2 %马鞍山: 2.5 %马鞍山: 2.5 %其他North Point北京南昌台州嘉兴广州张家口扬州昆明杭州漯河石家庄芒廷维尤芝加哥西宁西安运城郑州长沙青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (317) PDF downloads(21) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return