Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 54 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
LAI Haopeng, QIU Hao, LIAO Feiyu, XU Chao, ZHENG Ruisheng, LIU Jianjun, QIU Yujin. Research on Dynamic Crack Propagation Behavior of Steel-HSC Interface Under Impact Loads[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 103-111. doi: 10.3724/j.gyjzG24042910
Citation: LAI Haopeng, QIU Hao, LIAO Feiyu, XU Chao, ZHENG Ruisheng, LIU Jianjun, QIU Yujin. Research on Dynamic Crack Propagation Behavior of Steel-HSC Interface Under Impact Loads[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 103-111. doi: 10.3724/j.gyjzG24042910

Research on Dynamic Crack Propagation Behavior of Steel-HSC Interface Under Impact Loads

doi: 10.3724/j.gyjzG24042910
  • Received Date: 2024-04-29
    Available Online: 2024-12-05
  • For steel-HSC(high-strength concrete) composite structures, the interface performance of steel and high-strength concrete is the key to determine the working mechanism of the two. To this end, the paper conducted experimental and theoretical research on the dynamic mechanical properties of the steel-HSC interface with shear studs under impact loads. The composite specimens under stress waves were experimentally studied using a split Hopkinson bar system, and the complex stress intensity factor at the crack tip of the composite specimen was obtained by an experimental numerical method. The research results showed that: 1) Under impact loads, the BNSCB specimen was not only prone to stress concentration at the shear studs, but also had a certain degree of inhibitory effect on the propagation of interface cracks. 2) When using a three-dimensional model to solve the stress intensity factor of the specimen, the average values of K1 and K2 along the thickness direction were taken as the numerical solution of the BNSCB specimen parameter K1 and K2. 3) The maximum and average velocities of the interface crack propagation of the BNSCB specimen increased with the increase of the high-strength concrete strength. 4) With the increase of the high-strength concrete strength, the fracture parameter K1 value at the interface crack tip of the BNSCB specimen would increase.
  • loading
  • [1]
    赵秋, 杨明, 李聪. 不同钢纤维掺量高配筋超高性能混凝土板抗弯试验研究[J]. 工业建筑, 2018, 48(10): 148-151

    , 125.
    [2]
    张志勇, 刘方宁, 陈晓东. UHPC在现浇预应力混凝土箱梁齿块中的应用[J]. 建筑结构, 2023, 53(增刊1): 1754-1760.
    [3]
    SHAO N N X, DENG N N L, CAO N N J. Innovative steel-UHPC composite bridge girders for long-span bridges[J]. Frontiers of Structural and Civil Engineering, 2019, 13(4): 981-989.
    [4]
    NEWMARK N M, SIESS C P, VIEST I M. Tests and analysis of composite beams with incomplete interaction[J]. Experimental Stress Analysis, 1951, 9(1): 75-92.
    [5]
    CORNELL C A, KRAWINKLER H. Progress and challenges inseismic performance assessment [J]. PEER Center News, 2000, 3(2): 4-6.
    [6]
    ROTTER J, ANSOURIAN P. Cross-section behaviour and ductility in composite beams[J]. Proceedings of the Institution of Civil Engineers, 1979, 67(2):453-474.
    [7]
    OLLGAARD J G, SLUTTER R G, FISHER J W. Shear strength of stud connectors in lightweight and normal weight concrete [J]. Engineering Journal, 1971(4): 71-10.
    [8]
    朱劲松, 王修策, 丁婧楠. 钢-UHPC华夫板组合梁负弯矩区抗弯性能试验[J]. 中国公路学报, 2021, 34(8): 234-245.
    [9]
    杜国锋, 曹煊, 谢向东, 等. 高强钢管超高性能混凝土界面黏结滑移性能试验[J]. 河南理工大学学报(自然科学版), 2022, 29(3): 1-9.
    [10]
    王秋维, 梁林, 史庆轩, 等. 方钢管超高性能混凝土界面黏结滑移性能[J]. 湖南大学学报(自然科学版), 2022, 49(11): 116-125.
    [11]
    QIU H, LAI H P, LIAO F Y, CHEN Y F. Experimental study on dynamic fracture of UHPC-NC specimens after high temperature burning treatment[J]. Theoretical and Applied Fracture Mechanics, 2024, 131, 104385.
    [12]
    安然, 王有志. 剪力钉连接件拉剪共同作用抗剪性能[J]. 吉林大学学报(工学版), 2023, 53(9): 2554-2562.
    [13]
    姚亚东. 有格室前后承压板式钢混结合段静力行为研究[D]. 成都: 西南交通大学, 2016.
    [14]
    YANG J, CHEN B, SU J, et al. Effects of fibers on the mechanical properties of UHPC: a review[J]. Journal of Traffic and Transportation Engineering, 2022, 9(3):363-387.
    [15]
    中华人民共和国住房和城乡建设部.钢结构设计标准:GB 50017—2017[S].北京:中国建筑工业出版社, 2018.
    [16]
    QIU H, CHEN R Y, ZHENG W Q, et al. Experimental study on dynamic fracture of rock-mortar specimens with different interface trajectories[J]. Theoretical and Applied Fracture Mechanics, 2023, 236, 103983.
    [17]
    占玉林, 张程, 邵俊虎, 等. 剪力钉约束下高强混凝土收缩特性的数值模拟研究[J]. 公路, 2023, 68(10): 292-299.
    [18]
    张爱平. 钢-混组合结构栓钉连接件抗剪性能研究[D]. 杭州: 浙江大学, 2020.
    [19]
    许金泉. 界面力学[M]. 北京:科学出版社, 2006.
    [20]
    PARMIGIANI J P, THOULESS M D. The roles of toughness and cohesive strength on crack deflection at interfaces[J]. J. Mech. Phys. Solids, 2006, 54: 266-287.
    [21]
    贾普荣, 张元冲. 双材料界面裂纹应力强度因子计算[J]. 机械科学与技术, 2001, 20(9):15-17

    , 34.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return