Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 54 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
DENG Jun, LI Junhui, GUO Dong. A Review of Durability Research of Notched Steel Beams Reinfoned with Prestressed CFRP[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 81-90. doi: 10.3724/j.gyjzG24042801
Citation: DENG Jun, LI Junhui, GUO Dong. A Review of Durability Research of Notched Steel Beams Reinfoned with Prestressed CFRP[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 81-90. doi: 10.3724/j.gyjzG24042801

A Review of Durability Research of Notched Steel Beams Reinfoned with Prestressed CFRP

doi: 10.3724/j.gyjzG24042801
  • Received Date: 2024-04-28
    Available Online: 2024-06-24
  • Fatigue cracking is one of the most common issue that damages the serviceability of steel bridges. Prestressed carbon fiber-reinforced polymer (CFRP) materials can effectively inhibit crack propagation, thereby extending the service life of structures. In prestressed CFRP-reinforced steel beams, the interface between CFRP and steel interface serves as the primary load transfer path, ensuring the mechanical properties and durability of the reinforced structure. However, under the influence of fatigue and hygrothermal environments, the bonding performance of the interface between CFRP and steel may tend to degrade, leading to the degradation of mechanical properties in the reinforced structure. This paper summarized the results of static and fatigue performance tests of steel beams with different prestressed strengthening system design schemes, as well as the degree of influence of environmental factors on structural performance, based on existing research. Additionally, this paper compiled formulas for calculating the interface principal stress and energy release rate of damaged steel beams reinforced with prestressed CFRP, and proposed methods for predicting the bearing capacity reduction coefficient and service life of reinforced steel beams under fatigue loading and hygrothermal environments, as well as structural reinforcement design strategies considering interface durability.
  • loading
  • [1]
    邓军, 汪毅, 李俊辉,等.碳纤维增强复合材料加固钢构件耐久性能研究[M].北京:中国建筑工业出版社,2023.
    [2]
    WU G, WANG H T, WU Z S, et al. Experimental Study on the Fatigue Behavior of Steel Beams Strengthened with Different Fiber-Reinforced Composite Plates [J]. Journal of Composites for Construction, 2012, 16(2): 127-137.
    [3]
    YU Q Q, WU Y F. Fatigue strengthening of cracked steel beams with different configurations and materials [J/OL]. Journal of Composites for Construction, 2017, 21(2). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000750.
    [4]
    YUE Q R, ZHENG Y, CHEN X, et al. Research on fatigue performance of CFRP reinforced steel crane girder [J]. Composite Structures, 2016, 154: 277-285.
    [5]
    CHEN T, YAO J, LIU R, et al. Fatigue behavior of steel plates with multi-holes repaired by CFRP [J/OL]. Composite Structures, 2020, 242. https://doi.org/10.1016/j.compstruct.2020.112163.
    [6]
    WANG Z Y, WANG Q Y, LI L, et al. Fatigue behaviour of CFRP strengthened open-hole steel plates [J]. Thin-Walled Structures, 2017, 115: 176-187.
    [7]
    YU Q Q, ZHAO X L, AL-MAHAIDI R, et al. Tests on cracked steel plates with different damage levels strengthened by CFRP laminates [J/OL]. International Journal of Structural Stability and Dynamics, 2014, 14(6). https://doi.org/10.1016/j.ijfatigue.2020.105914.
    [8]
    KIM Y J, HARRIES K A. Fatigue behavior of damaged steel beams repaired with CFRP strips [J]. Engineering Structures, 2011, 33(5): 1491-1502.
    [9]
    COLOMBI P, FAVA G. Experimental study on the fatigue behaviour of cracked steel beams repaired with CFRP plates [J]. Engineering Fracture Mechanics, 2015, 145: 128-142.
    [10]
    HOSSEINI A, GHAFOORI E, AL-MAHAIDI R, et al. Strengthening of a 19th-century roadway metallic bridge using nonprestressed bonded and prestressed unbonded CFRP plates [J]. Construction and Building Materials, 2019, 209: 240-259.
    [11]
    GHAFOORI E, MOTAVALLI M, NUSSBAUMER A, et al. Design criterion for fatigue strengthening of riveted beams in a 120-year-old railway metallic bridge using pre-stressed CFRP plates [J]. Composites Part B: Engineering, 2015, 68: 1-13.
    [12]
    CHATAIGNER S, WAHBEH M, GARCIA-SANCHEZ D, et al. Fatigue strengthening of steel bridges with adhesively bonded CFRP laminates: case study [J/OL]. Journal of Composites for Construction, 2020, 24(3). https://doi.org/10.1061/(ASCE)CC.1943-5614.0001014.
    [13]
    HEYDARINOURI H, NUSSBAUMER A, MOTAVALLI M, et al. Strengthening of steel connections in a 92-year-old railway bridge using prestressed CFRP rods: Multiaxial fatigue design criterion [J/OL]. Journal of Bridge Engineering, 2021, 26(6). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001714.
    [14]
    EMDAD R, AL-MAHAIDI R. Effect of prestressed CFRP patches on crack growth of centre-notched steel plates [J]. Composite Structures, 2015, 123: 109-122.
    [15]
    DENG J, LEE M M K, MOY S S J. Stress analysis of steel beams reinforced with a bonded CFRP plate [J]. Composite Structures, 2004, 65(2): 205-215.
    [16]
    GHAFOORI E. Interfacial stresses in beams strengthened with bonded prestressed plates [J]. Engineering Structures, 2013, 46: 508-510.
    [17]
    DENG J, JIA Y H, ZHENG H Z. Theoretical and experimental study on notched steel beams strengthened with CFRP plate [J]. Composite Structures, 2016, 136: 450-459.
    [18]
    LI J, WANG Y, DENG J, et al. Experimental study on the flexural behaviour of notched steel beams strengthened by prestressed CFRP plate with an end plate anchorage system [J]. Engineering Structures, 2018, 171: 29-39.
    [19]
    LI S, ZHU T, LU Y, et al. Effect of Temperature Variation on Bond Characteristics between CFRP and Steel Plate [J/OL]. International Journal of Polymer Science, 2016, 2016. https://doi.org/10.1155/2016/5674572.
    [20]
    KE L, LI C, HE J, et al. Effects of elevated temperatures on mechanical behavior of epoxy adhesives and CFRP-steel hybrid joints [J/OL]. Composite Structures, 2020, 235. https://doi.org/10.1016/j.compstruct.2019.111789.
    [21]
    GUO D, LIU Y L, GAO W Y, et al. Bond behavior of CFRP-to-steel bonded joints at different service temperatures: Experimental study and FE modeling [J/OL]. Construction and Building Materials, 2023, 362. https://doi.org/10.1016/j.conbuildmat.2022.129836.
    [22]
    GUO D, WANG H P, LIU Y L, et al. Structural behavior of CFRP-strengthened steel beams at different service temperatures: Experimental study and FE modeling [J/OL]. Engineering Structures, 2023, 293. https://doi.org/10.1016/j.engstruct.2023.116646.
    [23]
    AROUCHE M M, BUDHE S, ALVES L, et al. Effect of moisture on the adhesion of CFRP-to-steel bonded joints using peel tests [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40: 1-8.
    [24]
    XIAN G, GUO R, LI C, et al. Mechanical performance evolution and life prediction of prestressed CFRP plate exposed to hygrothermal and freeze-thaw environments [J]. Composite Structures, 2022, 293:1-13.
    [25]
    BATUWITAGE C, FAWZIA S, THAMBIRATNAM D, et al. Durability of CFRP strengthened steel plate double-strap joints in accelerated corrosion environments [J]. Composite Structures, 2017, 160: 1287-1298.
    [26]
    REN H, LI S, GAO D. Bond behaviour of CFRP and steel under dry-wet cyclic condition and loading [J]. China Civil Engineering Journal, 2009, 42: 36-41.
    [27]
    YU Q Q, GAO R X, GU X L, et al. Bond behavior of CFRP-steel double-lap joints exposed to marine atmosphere and fatigue loading [J]. Engineering Structures, 2018, 175: 76-85.
    [28]
    GHAFOORI E, MOTAVALLI M. Innovative CFRP-prestressing system for strengthening metallic structures [J/OL]. Journal of Composites for Construction, 2015, 19(6). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000559.
    [29]
    HOSSEINI A, GHAFOORI E, MOTAVALLI M, et al. Flat prestressed unbonded retrofit system for strengthening of existing metallic I-Girders [J]. Composites Part B: Engineering, 2018, 155: 156-172.
    [30]
    YE H, LI C, PEI S, et al. Fatigue performance analysis of damaged steel beams strengthened with prestressed unbonded CFRP plates [J/OL]. Journal of Bridge Engineering, 2018, 23(7). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001251.
    [31]
    DENG J, LI J. Durability behaviour of notched steel beam strengthened with prestressed CFRP plate[C]//Springer International Publishing. Lecture Notes in Civil Engineering, 2022.
    [32]
    YU Q Q, WU Y F. Fatigue strengthening of cracked steel beams with different configurations and materials [J/OL]. Journal of Composites for Construction, 2017, 21(2). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000750.
    [33]
    GHAFOORI E, MOTAVALLI M. Lateral-torsional buckling of steel I-beams retrofitted by bonded and un-bonded CFRP laminates with different prestress levels: experimental and numerical study [J]. Construction and Building Materials, 2015, 76: 194-206.
    [34]
    YU Q Q, WU Y F. Fatigue durability of cracked steel beams retrofitted with high-strength materials [J]. Construction and Building Materials, 2017, 155: 1188-1197.
    [35]
    GUO D, ZHOU H, WANG H P, et al. Effect of temperature variation on the plate-end debonding of FRP-strengthened steel beams: coupled mixed-mode cohesive zone modeling [J/OL]. Engineering Fracture Mechanics, 2022, 270. https://doi.org/10.1016/j.engfracmech.2022.108583.
    [36]
    HOSSEINI A, GHAFOORI E, MOTAVALLI M, et al. Prestressed unbonded reinforcement system with multiple CFRP plates for fatigue strengthening of steel members [J/OL]. Polymers, 2018, 10(3). https://doi.org/10.3390/polym10030264.
    [37]
    CHEN T, QI M, GU X L, et al. Flexural strength of carbon fiber reinforced polymer repaired cracked rectangular hollow section steel beams [J/OL]. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/204861.
    [38]
    DENG J, LI J, ZHU M. Fatigue behavior of notched steel beams strengthened by a prestressed CFRP plate subjected to wetting/drying cycles [J/OL]. Composites Part B: Engineering, 2022, 230. https://doi.org/10.1016/j.compositesb.2021.109491.
    [39]
    GUO D, GAO W Y, LIU Y L, et al. Intermediate crack-induced debonding in CFRP-retrofitted notched steel beams at different service temperatures: experimental test and finite element modeling [J/OL]. Composite Structures, 2023, 304. https://doi.org/10.1016/j.compstruct.2022.116388.
    [40]
    WANG H T, BIAN Z N, CHEN M S, et al. Flexural strengthening of damaged steel beams with prestressed CFRP plates using a novel prestressing system [J/OL]. Engineering Structures, 2023, 284. https://doi.org/10.1016/j.engstruct.2023.115953.
    [41]
    CHEN T, GU X L, QI M, et al. Experimental study on fatigue behavior of cracked rectangular hollow-section steel beams repaired with prestressed CFRP plates [J/OL]. Journal of Composites for Construction, 2018, 22(5). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000872.
    [42]
    WANG Z, XIAN G, ZHAO X L. Effects of hydrothermal aging on carbon fibre/epoxy composites with different interfacial bonding strength [J]. Construction and Building Materials, 2018, 161: 634-648.
    [43]
    LI J, XIE Y, ZHU M, et al. Degradation mechanism of steel/CFRP plate interface subjected to overloading fatigue and wetting/drying cycles [J/OL]. Thin-Walled Structures, 2022, 179. https://doi.org/10.1016/j.tws.2022.109644.
    [44]
    XU Q, LI F, MU W, et al. Effect of hygrothermal and alternating load coupled aging on CFRP/Al bonded joints [J/OL]. International Journal of Adhesion and Adhesives, 2021, 109. https://doi.org/10.1016/j.ijadhadh.2021.102912.
    [45]
    REN X, JIANG L, HE J, et al. Durability of CFRP-steel double-lap joints under cyclic freeze-thaw/wet-dry conditions [J/OL]. Polymers, 2022, 14(17). https://doi.org/10.3390/polym14173445.
    [46]
    REN X, WANG Y, ZHANG Y, et al. Effect of freeze-thaw/dry-wet environment on mechanical properties of epoxy resin adhesive [J]. Journal of Adhesion Science and Technology, 2023, 37(13): 2046-2068.
    [47]
    SAMALI B, SHADAN P, SAEED N. Bond degradation at environmentally exposed FRP-strengthened steel elements: state of the art [J/OL]. Composites Part C: Open Access, 2023,12. https://doi.org/10.1016/j.jcomc.2023.100374.
    [48]
    LI J, DENG J, WANG Y, et al. Experimental study of notched steel beams strengthened with a CFRP plate subjected to overloading fatigue and wetting/drying cycles [J]. Composite Structures, 2019, 209: 634-643.
    [49]
    LI J, ZHU M, DENG J. Flexural behaviour of notched steel beams strengthened with a prestressed CFRP plate subjected to fatigue damage and wetting/drying cycles [J/OL]. Engineering Structures, 2022, 250. https://doi.org/10.1016/j.engstruct.2021.113430.
    [50]
    李俊辉. 湿热环境下预应力 CFRP 加固缺陷钢梁的界面剥离机理及疲劳性能研究 [D]. 广州:广东工业大学, 2020.
    [51]
    COLOMBI P, FAVA G. Fatigue crack growth in steel beams strengthened by CFRP strips [J]. Theoretical and Applied Fracture Mechanics, 2016, 85: 173-182.
    [52]
    BOCCIARELLI M, COLOMBI P, D'ANTINO T, et al. Intermediate crack induced debonding in steel beams reinforced with CFRP plates under fatigue loading [J]. Engineering Structures, 2018,171:883-893.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (110) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return