Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 54 Issue 12
Dec.  2024
Turn off MathJax
Article Contents
WANG Yinpeng, GAO Bo, WEI Wei, CAO Yanguang, LI Zhaodong. Effects of Weathering Bridge Steel and Cooling Rate on the Interfacial Microstructure and Mechanical Properties of Stainless Steel Clad Plates[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 18-25. doi: 10.3724/j.gyjzG24042401
Citation: WANG Yinpeng, GAO Bo, WEI Wei, CAO Yanguang, LI Zhaodong. Effects of Weathering Bridge Steel and Cooling Rate on the Interfacial Microstructure and Mechanical Properties of Stainless Steel Clad Plates[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(12): 18-25. doi: 10.3724/j.gyjzG24042401

Effects of Weathering Bridge Steel and Cooling Rate on the Interfacial Microstructure and Mechanical Properties of Stainless Steel Clad Plates

doi: 10.3724/j.gyjzG24042401
  • Received Date: 2024-04-24
    Available Online: 2025-01-04
  • Publish Date: 2024-12-20
  • 316L+Q420qENH and 316L+Q500qENH stainless steel clad plates were prepared by Gleeble-1500D to simulate the hot-rolling bonding of Q420qENH/Q500qENH weathering bridge steel and 316L stainless steel. The effects of bridge weathering steel and cooling rate on the interfacial microstructure and shear strength of stainless steel clad plates were investigated. The results showed that 316L+Q500qENH exhibited higher interfacial shear strength (>420 MPa) than 316L+Q420qENH, which had thinner banded ferrite. For 316L+Q420qENH steel, when the cooling rate increased from 0.25 ℃/s to 1 ℃/s, the degree of element diffusion decreased, leading to a decrease in interfacial shear strength. Within the cooling rate range of 1~10 ℃/s after rolling, the content of ferrite at the interface gradually decreased and the microstructure gradually refined. Therefore the interface shear strength of 316L+Q420qENH steel gradually improved and reached the highest value at 10 ℃/s, which was 422 MPa. In general, the reduction of ferrite content at the interface, the refinement of microstructure and the increase of element diffusion were conducive to improve the interfacial shear strength of the stainless steel clad plates.
  • loading
  • [1]
    FERREIRA R P, NASCIMENTO C C F, REIS G S, et al. Thermomechanical behavior and corrosion resistance of a 316 L austenitic stainless steel[J]. Materials Sciences and Applications, 2020,11(4): 217-233.
    [2]
    张宝刚,齐金朋.不锈钢复合钢板在铁路钢桥上的应用技术[J].钢结构,2013,28(1):51-55

    ,45.
    [3]
    曾周燏,江姗,李东晖.TMCP工艺轧制桥梁用不锈钢复合板的组织与性能[J].中国冶金,2017,27(9):19-23.
    [4]
    耿林,倪丁瑞,郑镇洙.原位自生非连续增强钛基复合材料的研究现状与展望[J].复合材料学报,2006(1):1-11.
    [5]
    LI L, NAGAI K, YIN F X. Progress in cold roll bonding of metals[J]. Science and Technology of Advanced Materials, 2008,9(2):1-11.
    [6]
    CHEN C X, LIU M Y, LIU B X, et al. Tensile shear sample designand interfacial shear strength of stainless steel clad plate[J].Fusion Engineering and Design, 2017,125:431-441.
    [7]
    LIN Z M, LIN B X, YU W X, et al. The evolution behavior characteristics of interfacial oxides in the hot-rolled stainless steel clad plate[J]. Corrosion Science, 2023, 211, 110866.
    [8]
    李中平,周文浩,史术华,等.不锈钢复合板316L+Q500qE的组织与性能研究[J].金属材料与冶金工程,2022,50(6):15-20.
    [9]
    李国鹏,骆宗安,杨子江,等.轧后冷却速度对真空热轧N08367/Q345R复合板组织与性能的影响[J].热加工工艺,2022,51(18):76-79.
    [10]
    SUN J H, LIU X F, YANG Y H, et al. Interfacial gradient M7C3 carbides precipitation behavior and strengthening mechanisms of stainless steel/carbon steel clad plates[J].Journal of Materials Research and Technology,2022, 21:3476-3488.
    [11]
    中国国家标准化管理委员会. 复合钢板力学及工艺性能试验方法:GB/T 6396—2008[S].北京:中国标准出版社,2008.
    [12]
    FARRAR R A, ZHANG Z, BANNISTER S R, et al. The effect of prior austenite grain size on the transformation behaviour of C-Mn-Ni weld metal[J]. Journal of Materials Science, 1993, 28:1385-1390.
    [13]
    CAVE J A, WILLIAMS J D. The mechanism of cold pressure welding by rolling[J]. Journal of the Institute of Metals, 1973,101: 203-207.
    [14]
    MITANI Y, VARGAS R, ZAVALA M. Deformation and diffusion bonding of aluminide-coated steels[J]. Thin Solid Films, 1984,111:37-42.
    [15]
    MAHDAVIAN M M, GHALANDARI L, REIHANIAN M. Accumulative roll bonding of multilayered Cu/Zn/Al: an evaluation of microstructure and mechanical properties[J]. Material Science and Engineering: A, 2013, 579: 99-107.
    [16]
    胡赓祥, 蔡珣. 材料科学基础[M]. 3版. 上海: 上海交通大学出版社, 2010: 131.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (16) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return