Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 54 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
YUE Xianghua, LONG Yueling, JIANG Yujie, LI Wentao, CAI Jian. Axial Compressive Performance and Constitutive Model of CFST Columns with an Inner FRP Tube[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 177-189. doi: 10.3724/j.gyjzG24041713
Citation: YUE Xianghua, LONG Yueling, JIANG Yujie, LI Wentao, CAI Jian. Axial Compressive Performance and Constitutive Model of CFST Columns with an Inner FRP Tube[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 177-189. doi: 10.3724/j.gyjzG24041713

Axial Compressive Performance and Constitutive Model of CFST Columns with an Inner FRP Tube

doi: 10.3724/j.gyjzG24041713
  • Received Date: 2024-04-17
    Available Online: 2024-06-24
  • 9 concrete-filled steel tubular columns with an inner FRP tube (CFT-GT), 1 concrete-filled steel tubular column (CFT) and 9 FRP tube confined concrete columns were tested subjected to axial compression. The results showed that the ultimate bearing capacity of CFT-GT was higher than that of CFT. With the decrease of the diameter-to-wall thickness ratios of the inner FRP tube (d/t2) or the diameter ratios of the steel tube to the FRP tube (D/d), the ultimate bearing capacity increased. The circumferential and longitudinal peak strains of CFT-GT increased with the decrease of d/t2. With the D/d increasing, the circumferential peak strains of the inner FRP tube of CFT-GT increased. However, D/d had little influence on the longitudinal peak strains of the inner FRP tube. In addition, it showed that all the ultimate circumferential strains of the inner FRP tube of CFT-GT were smaller than that of FRP tube confined concrete columns while the ultimate longitudinal strains of the inner FRP tube of CFT-GT was higher than that of FRP tube confined concrete column specimens. Based on the experimental study above, it was pointed out that the relations between circumferential strain and longitudinal strain in all current FRP confined concrete constitutive models were not appropriate for CFT-GT composite columns. Hence, a new constitutive model was proposed for CFT-GT composite columns.
  • loading
  • [1]
    XIAO Y. Applications of FRP composites in concrete columns[J]. Advances in Structural Engineering, 2004, 7(4): 335-343.
    [2]
    XIAO Y, HE W H, CHOI K K. Confined concrete-filled tubular columns[J]. Journal of Structural Engineering ASCE, 2005, 131(3): 488-497.
    [3]
    CHOI K K, XIAO Y. Analytical model of circular CFRP confined concrete-filled steel tubular columns under axial compression[J]. Journal of Composites for Construction ASCE, 2010, 14(1): 125-133.
    [4]
    顾威, 关崇伟, 赵颖华, 等. 圆CFRP-钢复合管混凝土轴压短柱试验研究[J]. 沈阳建筑工程学院学报(自然科学版), 2004, 20(2): 118-120.
    [5]
    顾威, 赵颖华, 尚东伟. CFRP-钢管混凝土轴压短柱承载力分析[J]. 工程力学, 2006, 23(1): 149-153.
    [6]
    王庆利, 王金鱼, 张永丹. CFRP-钢管砼轴压短柱受力性能分析[J]. 工程力学, 2006, 23(8): 102-105.
    [7]
    王庆利, 叶茂, 周琳. 圆CFRP-钢管混凝土构件受弯性能研究[J]. 土木工程学报, 2008, 41(10): 30-38.
    [8]
    王庆利, 谭鹏宇, 魏溯华. 圆CFRP-钢管混凝土压弯构件静力性能试验研究[J]. 建筑结构学报, 2008, 29(5): 67-74.
    [9]
    TAO Z, HAN L H, ZHUANG J P. Axial loading behavior of CFRP strengthened concrete-filled steel tubular stub columns [J]. Advances in Structural Engineering, 2007, 10(1): 37-46.
    [10]
    TENG J G, HU Y M. Theoretical model for FRP-confined circular concrete-filled steel tubes under axial compression[C]//Proceedings, 3rd International Conference on FRP Composites in Civil Engineering. Miami, Florida, USA: 2006: 503-506.
    [11]
    HU Y M, YU T, TENG J G. FRP-confined circular concrete-filled thin steel tubes under axial compression[J]. Journal of Composites for Construction ASCE, 2011, 15(5): 850-860.
    [12]
    TENG J G, HU Y M, YU T. Stress-strain model for concrete in FRP-confined steel tubular columns[J]. Engineering Structures, 2013, 49: 156-167.
    [13]
    DONG C X, KWAN A K H, HO J C M. Axial and lateral stress-strain model for concrete-filled steel tubes with FRP jackets[J]. Engineering Structures, 2016, 126: 365-378.
    [14]
    DING F X, LU D R, BAI Y, et al. Behaviour of CFRP-confined concrete-filled circular steel tube stub columns under axial loading[J]. Thin-Walled Structures, 2018, 125: 107-118.
    [15]
    车媛, 王庆利, 邵永波, 等. 圆CFRP-钢管混凝土压弯构件滞回性能试验研究[J].土木工程学报, 2011, 44(7): 46-54.
    [16]
    YU T, HU Y M, TENG J G. FRP-confined circular concrete-filled steel tubular columns under cyclic axial compression[J]. Journal of Constructional Steel Research, 2014, 94: 33-48.
    [17]
    YU T, HU Y M, TENG J G. Cyclic lateral response of FRP-confined circular concrete-filled steel tubular columns[J]. Journal of Constructional Steel Research, 2016,124: 12-22.
    [18]
    YU T, WONG Y L, TENG J G, et al. Flexural behavior of hybrid FRP-concrete-steel double skin tubular members[J]. Journal of Composites for Construction ASCE, 2006, 10(5): 443-452.
    [19]
    TENG J G, YU T, WONG Y L, et al. Hybrid FRP concrete steel tubular columns: concept and behavior[J]. Construction and Building Materials, 2007, 21: 846-854.
    [20]
    YU T, ZHANG B, CAO Y B, et al. Behavior of hybrid FRP-concrete-steel double skin tubular columns subjected to cyclic axial compression[J]. Thin-Walled Structures, 2012, 61: 196-203.
    [21]
    GROGNEC P L, LE V A. Some new analytical results for plastic buckling and initial post-buckling of plates and cylinders under uniform compression[J]. Thin-Walled Structures, 2009, 47: 879-889.
    [22]
    ZHANG B, TENG J G, YU T. Experimental behavior of hybrid FRP-concrete-steel double-skin tubular columns under combined axial compression and cyclic lateral loading[J]. Engineering Structures, 2015, 99: 214-231.
    [23]
    HAN L H, TAO Z, LIAO F Y, et al. Tests on cyclic performance of FRP-concrete-steel double-skin tubular columns[J]. Thin-Walled Structure, 2010, 48(6): 430-439.
    [24]
    FANGGI B A L, Ozbakkaloglu T. Compressive behavior of aramid FRP-HSC-Steel double-skin tubular columns[J]. Construction and Building Materials, 2013, 48: 554-565.
    [25]
    FENG P, CHENG S, BAI Y, et al. Mechanical behavior of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression[J]. Composite Structures, 2015, 123: 312-324.
    [26]
    李帼昌, 麻丽, 杨景利,等. 内置CFRP圆管的方钢管高强混凝土轴压短柱承载力计算初探[J]. 沈阳建筑大学学报, 2008, 24(1): 62-66.
    [27]
    李帼昌, 侯东序, 李宁. 内置CFRP圆管的方钢管高强混凝土偏压短柱试验[J]. 沈阳建筑大学学报, 2009, 9(5): 871-876.
    [28]
    李帼昌, 邢娜, 邢忠华. 内置CFRP圆管的方钢管高强混凝土轴压短柱试验[J]. 沈阳建筑大学学报, 2009, 25(2): 244-249.
    [29]
    李帼昌, 李淑杰, 王奇. 内置CFRP圆管的方钢管高强混凝土短柱的非线性有限元分析[J]. 沈阳建筑大学学报, 2011, 27(3): 451-456.
    [30]
    陶毅, 张海镇, 史庆轩, 等. 内置FRP约束混凝土的方钢管混凝土轴压承载力[J]. 土木建筑与环境工程, 2017, 39: 43-49.
    [31]
    ASTM. Standard test method for compressive strength of cylindrical concrete specimens:ASTM C39/C39M[S]. Philadelphia, USA: American Society for Testing and Materials, 2011.
    [32]
    中华人民共和国国家质量监督检验检疫总局. 金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2010[S]. 北京:中国标准出版社, 2010.
    [33]
    中华人民共和国国家质量监督检验检疫总局. 金属材料 弹性模量和泊松比试验方法:GB/T 22315—2008[S]. 北京:中国标准出版社, 2008.
    [34]
    ASTM. Standard test method for apparent hoop tensile strength of plastic or reinforced plastic pipe by split disk method:ASTM D2290-08[S]. Philadelphia, USA: American Society for Testing and Materials, 1987.
    [35]
    MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering ASCE, 1988, 114(8): 1807-1826.
    [36]
    POPOVICS S. A numerical approach to the complete stress-strain curves for concrete[J]. Cement & Concrete Research, 1973, 3(5): 583-599.
    [37]
    MIRMIRAN A, SINGHVI A, MONTI G. FRP-confined concrete model[J]. Journal of Composites for Construction, 1999, 3(3): 143-150.
    [38]
    LAM L, TENG J G. Design-oriented stress-strain model for FRP-confined concrete[J]. Construction & Building Materials, 2003, 17(6/7): 471-489.
    [39]
    KARABINIS A I, ROUSAKIS T C. Concrete confined by FRP material: a plasticity approach[J]. Engineering Structures, 2002, 24(7): 923-932.
    [40]
    HARRIES K A, CAREY S A. Shape and "gap" effects on the behavior of variably confined concrete[J]. Cement and Concrete Research, 2003, 33(6): 881-890.
    [41]
    WILLIAM K J, WARNKE E P. Constitutive model for the triaxial behaviour of concrete[J]. Proceedings, International Association for Bridge and Structural Engineering, 1975(19): 1-30.
    [42]
    TENG J G, HUANG Y L, LAM L, et al. Theoretical model for fiber-reinforced polymer-confined concrete[J]. Journal of Composites for Construction, 2007, 11(2): 201-210.
    [43]
    钟善桐. 钢管混凝土结构[M]. 北京:清华大学出版社, 2003.
    [44]
    SAKINO K, NAKAHARA H, MORINO S, et al. Behavior of centrally loaded concrete-filled steel-tube short columns[J]. Journal of Structural Engineering ASCE, 2004, 130(2): 180-188.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (19) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return