Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
FU Xin, PAN Molan, WANG Daiyu, WU Duanshuo. Quasi-Static Numerical Simulations and Resilient Force Models of GFRP-Confined FRP Bar-Reinforced Concrete Piers[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 31-45. doi: 10.3724/j.gyjzG24040301
Citation: FU Xin, PAN Molan, WANG Daiyu, WU Duanshuo. Quasi-Static Numerical Simulations and Resilient Force Models of GFRP-Confined FRP Bar-Reinforced Concrete Piers[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(6): 31-45. doi: 10.3724/j.gyjzG24040301

Quasi-Static Numerical Simulations and Resilient Force Models of GFRP-Confined FRP Bar-Reinforced Concrete Piers

doi: 10.3724/j.gyjzG24040301
  • Received Date: 2024-04-03
    Available Online: 2024-06-24
  • To study the seismic performances of a novel of GFRP-confined FRP bar-reinforced concrete piers, also called FCFRC piers which were constructed of GFRP rebars, CFRP stirrups, GFRP sheets, and concrete, a numerical simulation model for FCFRC piers under the monotonic and cyclic horizontal loads was developed based on software OpenSee. By the model, taking axial compressive ratios, shear-span ratios, longitudinal reinforcement ratios, confining levels of CFRP stirrups and external wrapped sheets, strength degrees of concrete and sizes of cross sections of piers as variables, pushover analysis was conducted on 5 184 FCFRC pier specimens. The effect of the above variables on key parameters of the trilinear resilience model with the yield bearing capacity, the peak bearing capacity, the elastic and elastic-plastic stiffness, and the ultimate drift angle was obtained. Analysis results indicated that the yield and ultimate bearing capacities all could be improved by increasing axial compressive ratios, longitudinal reinforcement ratios, strength degrees of concrete and sizes of cross sections, however, the confining levels of CFRP stirrups and external wrapped sheets had a little effect on them relatively. Based on the results of parameter analysis, the formulas for key parameters of the resilient model were obtained. In addition,the loading-unloading hysteresis regulation between horizontal force and displacement of FCFRC piers was proposed. Combining the skeleton curve and the hysteresis regulation, a resilient model for horizontal force and displacement of FCFRC piers was presented, simultaneously, compared with the test results, the adaptability of the model was verified.
  • [1]
    余巧凤, 梁栋. 中长期高速铁路网规划相关问题研究[J]. 铁道经济研究, 2017(1): 5-9.
    [2]
    张伟平, 顾祥林, 金贤玉, 等. 混凝土中钢筋锈蚀机机理及锈蚀钢筋力学性能研究[J]. 建筑结构学报,31(增刊1): 327-332.
    [3]
    郑山锁, 郑跃, 董立国, 等. 近海环境下锈蚀箍筋约束混凝土本构模型[J]. 浙江大学学报(工学版), 2020, 54(1): 48-55,72.
    [4]
    冯鹏, 王杰, 张枭, 等. FRP与海砂混凝土组合应用的发展与创新[J]. 玻璃钢/复合材料, 2014(12): 13-18.
    [5]
    叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006,39(3): 24-36.
    [6]
    董恒磊. 配置GFRP纵筋与新型箍筋的混凝土墩柱约束机理与抗震性能[D]. 哈尔滨:哈尔滨工业大学, 2020.
    [7]
    蔡忠奎. 混合配筋预制节段拼装桥墩抗震性能与设计方法[D]. 哈尔滨:哈尔滨工业大学, 2018.
    [8]
    郝建兵, 吴刚, 吴智深. 基于震后残余位移的结构可修复性研究[J]. 建筑结构, 2013, 43(1): 1254-1257.
    [9]
    YUAN Y, WANG Z Y, WANG D Y. Shear behavior of concrete beams reinforced with closed-type winding glass fiber-reinforced polymer stirrups[J]. Advances in Structural Engineering, 2022, 25(12): 2577-2589.
    [10]
    DONG H L, WANG D Y, WANG Z Y, SUN Y L. Axial compressive behavior of square concrete columns reinforced with innovative closed-type winding GFRP stirrups[J]. Composite Structures, 2018, 192:115-125.
    [11]
    赵佳佳.FRP约束FRP筋增强混凝土柱轴压性能试验与分析[D]. 哈尔滨:哈尔滨工业大学, 2023.
    [12]
    吴端硕.FRP约束FRP筋增强混凝土墩柱抗震性能试验与分析[D]. 哈尔滨:哈尔滨工业大学, 2023.
    [13]
    王代玉. FRP 加固非延性钢筋混凝土框架结构抗震性能试验与分析[D]. 哈尔滨: 哈尔滨工业大学, 2012.
    [14]
    于峰, 徐国士, 程安春. PVC-CFRP圆管钢筋混凝土柱恢复力模型研究[J]. 建筑结构学报, 2015, 36(9): 66-72.
    [15]
    周长东, 田腾, 吕西林, 等. 预应力碳纤维条带加固混凝土圆形墩柱恢复力模型试验研究[J]. 工程力学, 2013, 30(2): 125-134.
    [16]
    李升才, 白巨巨, 朱永甫. 装配式复合箍筋约束高强混凝土柱恢复力模型研究[J]. 振动与冲击, 2022, 41(10): 205-214.
    [17]
    邓宗才, 曾洪超, 徐海宾. 层内混杂FRP加固混凝土柱恢复力模型研究[J]. 华北水利水电学院学报, 2012, 33(6): 69-72.
    [18]
    陈传向.FRP外包FRP筋增强混凝土墩柱轴压及抗震性能研究[D]. 哈尔滨:哈尔滨工业大学, 2021.
    [19]
    SRITHARAN S, PRIESTLEY N M J, SEIBLE F. Nonlinear finite element analyses of concrete bridge joint systems subjected to seismic actions[J]. Finite Elements in Analysis & Design, 2000, 36(3/4): 215-233.
    [20]
    TENG J G, LAM L, LIN G, et al. Numerical simulation of FRP-jacketed RC columns subjected to cyclic and seismic loading[J/OL]. Journal of Composites for Construction, 2016, 20(1)[2024-04-03].https://doi.org/10.1061/(ASCE)CC.1943-56140000584.
    [21]
    中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010—2010[S]. 北京:中国建筑工业出版社,2015.
    [22]
    高王鑫.钢筋与套管约束CFRP纵筋混合配筋混凝土柱抗震性能研究[D].哈尔滨:哈尔滨工业大学, 2017.
    [23]
    MAN Y Q, WANG T Y, WANG Z Y, et al. Study on the bond performance of glass fiber-reinforced polymer bars considering the relative position between longitudinal bars and stirrups[J/OL]. Journal of Building Engineering, 2023, 71[2024-04-03].https://doi.org/10.1016/j.jobe.2023.106478.
    [24]
    FENG P, CHENG S, BAI Y, et al. Mechanical behavior of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression[J]. Composite Structures, 2015,123:312-324.
  • Relative Articles

    [1]WANG Bo, WANG Ning, WANG Jingfeng, CHEN Gang, CHENG Tao. Seismic Performance Tests of Prefabricated Concrete Frames with Embedded Composite Lightweight Aggregate Partition Wall Panels[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 159-169. doi: 10.3724/j.gyjzG23052901
    [2]CUI Keran, YU Feng, CHEN Taiyao, QIN Yin, FANG Yuan, BU Shuangshuang. Research on Restoring Force Models of Reinforced Self-Stressing Steel Slag Concrete Columns Confined with Circular Steel Tubes[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 50-61. doi: 10.13204/j.gyjzG22101204
    [3]CHU Liusheng, YAN Zenghui, TIAN Ye, YUAN Chengfang. A Resilience Model for Joints Between Steel-Reinforced Concrete Columns and Steel Beams Considering the Effect of Floor Slabs in a Shear Failure Mode[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(1): 175-181,90. doi: 10.13204/j.gyjzG20122911
    [4]WANG Shanzhang, ZHANG Bing, ZHANG Qianbiao, ZHENG Huanze, GAO Yuhang. Experimental Research on Seismic Properties of Rectangular FRP-Concrete-Steel Double-Skin Tubular Columns Under Quasi-Static Load[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 136-141,178. doi: 10.13204/j.gyjzG22031713
    [5]WANG Yan, XU Shanhua, LI Anbang. Research on Restoring Force Model of Freeze-Thaw Damaged Reinforced Concrete Columns[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(8): 97-102. doi: 10.13204/j.gyjzG21101322
    [6]HUANG Xinliang, CHEN Wenguang, TAN Pei, XU Jinjun, QIAN Sijiang. RESEARCH ON CALCULATION METHOD FOR AXIAL COMPRESSIVE STRENGTH AND ULTIMATE COMPRESSIVE STRAIN OF RECTANGULAR CONCRETE CONFINED WITH FRP[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(10): 170-176. doi: 10.13204/j.gyjzG21021601
    [7]ZHANG Guangtai, LIU Shituo, WANG Mingyang, LI Ruixiang, GUO Qiaojun. EXPERIMENTAL STUDY ON RESTORING FORCE MODEL FOR STEEL-POLYPROPYLENE-FIBER-REINFORCED CONCRETE SHEAR WALLS WITH LITHIUM SLAG[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(8): 53-59,33. doi: 10.13204/j.gyjzG20053102
    [8]YANG Haixu, ZHU Feng, WANG Haibiao, SHI Ming, SHI Xinru. RESEARCH ON MECHANICAL PROPERTIES AND ISOLATION EFFECT OF A ISOLATION BEARING WITH MULTI-STAGE FREQUENCY-CONVERSION COMPOSITE FRICTION PENDULUMS[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(6): 71-78,110. doi: 10.13204/j.gyjz202006012
    [13]Zhou Aihong, Yuan Ying, Cao Xiuling, Sun Wu. SIMPLIFIED ANALYSIS OF PARALLEL COMPOSITE ISOLATION SYSTEM BASED ON EQUIVALENT LINEARIZATION METHOD[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(8): 121-124. doi: 10.13204/j.gyjz201508022
    [14]Xue Jianyang Liu Fei Gao Liang, . EXPERIMENTAL STUDY OF RESTORING FORCE CHARACTERISTICS OF STEEL REINFORCED RECYCLED CONCRETE FRAME INFILLED WITH RECYCLED CONCRETE HOLLOW BLOCKS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(6): 160-164. doi: 10.13204/j.gyjz201506031
    [15]Men Jinjie, Li Peng, Guo Zhifeng. RESEARCH ON RESTORING FORCE MODEL OF RC COLUMN-STEEL BEAM COMPOSITE JOINTS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 132-137. doi: 10.13204/j.gyjz201505028
    [16]Xue Jianyang, Liu Jinlu, Ma Hui, Liu Yi, Liu Zuqiang. EXPERIMENTAL STUDY ON RESTORING FORCE MODEL OF STEEL REINFORCED RECYCLED AGGREGATE CONCRETE COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(9): 35-39,161. doi: 10.13204/j.gyjz201309006
    [17]Jiang Li-zhong, Yu Zhi-wu, Cao Hua, Liu Zhong-wu. RESEARCH ON RESTORING FORCE MODEL OF STEELCONCRETE COMPOSITE BEAMS[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(11): 85-87,96. doi: 10.13204/j.gyjz200711023
    [18]Zhao Zhonghu, Xie Heping, Xu Bo, Liu Zhibao. PRESENT STATUS OF RESEARCH ON CHARACTERISTICS OF RESTORING FORCE OF RC COMPRESSION-FLEXURE MEMBER[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(1): 62-65. doi: 10.13204/j.gyjz200601019
    [19]Yu Qing, Tao Zhong, Zhang Zheng. PARAMETER ANALYSIS OF LONG-TERM LOAD EFFECTS ON DEFORMATION OF FRP-CONFINED CONCRETE COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(9): 8-10,41. doi: 10.13204/j.gyjz200509003
    [20]Tao Zhong, Yu Qing. SUMMARY OF-STATE-OF-THE ART OF FRP-CONFINED CONCRETE COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(9): 1-4,37. doi: 10.13204/j.gyjz200509001
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.0 %FULLTEXT: 13.0 %META: 83.2 %META: 83.2 %PDF: 3.7 %PDF: 3.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 19.3 %其他: 19.3 %三明: 3.7 %三明: 3.7 %上海: 0.6 %上海: 0.6 %兰州: 1.2 %兰州: 1.2 %北京: 6.8 %北京: 6.8 %十堰: 0.6 %十堰: 0.6 %南京: 1.9 %南京: 1.9 %南昌: 1.9 %南昌: 1.9 %厦门: 1.9 %厦门: 1.9 %哈尔滨: 1.9 %哈尔滨: 1.9 %大连: 0.6 %大连: 0.6 %天津: 1.2 %天津: 1.2 %巴音郭楞: 0.6 %巴音郭楞: 0.6 %广州: 1.2 %广州: 1.2 %廊坊: 0.6 %廊坊: 0.6 %张家口: 0.6 %张家口: 0.6 %成都: 0.6 %成都: 0.6 %扬州: 1.2 %扬州: 1.2 %昆明: 0.6 %昆明: 0.6 %朝阳: 0.6 %朝阳: 0.6 %杭州: 1.2 %杭州: 1.2 %武汉: 1.2 %武汉: 1.2 %沈阳: 0.6 %沈阳: 0.6 %泰州: 0.6 %泰州: 0.6 %济南: 0.6 %济南: 0.6 %温州: 1.2 %温州: 1.2 %漯河: 3.1 %漯河: 3.1 %烟台: 1.2 %烟台: 1.2 %石家庄: 1.2 %石家庄: 1.2 %福州: 1.9 %福州: 1.9 %芒廷维尤: 22.4 %芒廷维尤: 22.4 %芝加哥: 9.9 %芝加哥: 9.9 %菏泽: 0.6 %菏泽: 0.6 %西安: 1.9 %西安: 1.9 %运城: 3.1 %运城: 3.1 %长沙: 1.2 %长沙: 1.2 %其他三明上海兰州北京十堰南京南昌厦门哈尔滨大连天津巴音郭楞广州廊坊张家口成都扬州昆明朝阳杭州武汉沈阳泰州济南温州漯河烟台石家庄福州芒廷维尤芝加哥菏泽西安运城长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (132) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return