Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 55 Issue 5
May  2025
Turn off MathJax
Article Contents
XIE Yongping, YU Chunyi, ZHAO Lijie, WANG Hao, GUO Jianming. Study on Size Effect of Bending-Shear Performance of High-Strength Reinforced Concrete Short Columns[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(5): 123-131. doi: 10.3724/j.gyjzG24022906
Citation: XIE Yongping, YU Chunyi, ZHAO Lijie, WANG Hao, GUO Jianming. Study on Size Effect of Bending-Shear Performance of High-Strength Reinforced Concrete Short Columns[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(5): 123-131. doi: 10.3724/j.gyjzG24022906

Study on Size Effect of Bending-Shear Performance of High-Strength Reinforced Concrete Short Columns

doi: 10.3724/j.gyjzG24022906
  • Received Date: 2024-02-29
    Available Online: 2025-07-15
  • In order to study the size effect of bending-shear performance of high-strength reinforced concrete short columns, based on the principles of geometric similarity and bearing capacity similarity, reinforced concrete short column specimens with cross-sectional side lengths of 300, 500, and 700 mm and concrete strength grade C60 were designed and fabricated. Low cycle repeated quasi-static tests were conducted on the specimens, and the failure modes, skeleton curves, and steel rebar strain of the specimens were discussed. Furthermore, the variation laws of shear performance with cross-sectional size, such as nominal bending stress, nominal rotation angle, P-Δ effect, ductility, energy dissipation capacity, and safety reserve factor, were analyzed. The test results indicated that all specimens had bending-shear failure. Before reaching the peak load, the cracks developed stably, which conformed to Bažant’s Type2 size effect model. The specimen had good ductility and energy dissipation capacity, with a ductility coefficient of 3-5 and a minimum ductility coefficient of 3.65. The nominal bending stress, nominal angle, P-Δ effect, ductility, and energy dissipation capacity exhibited significant size effects. The cross-sectional size increased from 300 mm to 700 mm, the peak nominal stress decreased by 16.7%, the safety reserve coefficient decreased by 11%, the specimen ductility decreased by 36.4%, and the average energy dissipation coefficient decreased by 54.3%. On the basis of tests, the theoretical formula for the bending bearing capacity of normal sections in GB/T 50010—2010 was modified based on the Type2 size effect model. The modified safety reserve coefficient no longer has size effects, ensuring that large-sized specimens have the same safety as small-sized specimens.
  • loading
  • [1]
    王清湘,林立岩. 高强混凝土柱延性的试验研究[J]. 建筑结构学报,1995(4):22-31.
    [2]
    吕西林,张国军,陈绍林. 高轴压比高强混凝土足尺框架柱抗震性能研究[J]. 建筑结构学报,2009,30(3):20-26.
    [3]
    叶列平,丁大钧,程文瀼. 高强砼框架柱抗震性能的试验研究[J]. 建筑结构学报,1992,13(4):41-48.
    [4]
    贾金青,赵国藩. 高强混凝土框架短柱力学性能的试验研究[J]. 建筑结构学报,2001,22(3):43-47.
    [5]
    史庆轩,王朋,田园,等. 高强箍筋约束高强混凝土短柱抗震性能试验研究[J]. 土木工程学报,2014,33(8):9-17.
    [6]
    GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society of London Series A,1921,221:163-198.
    [7]
    WEIBULL W. Phenomenon of rupture in solids[J]. Ingenioersvetenskaps Akad Handl,1939,153:1-55.
    [8]
    WEIBULL W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics,1951,18(2):293-297.
    [9]
    CARPINTERI A. Mechanical damage and crack growth in concrete:plastic collapse to brittle fracture[M]. Dordrecht:Martinus Nijhoff,1986.
    [10]
    CARPINTERI A. Decrease of apparent tensile and bending strength with specimen size:two different explanations based on fracture mechanics[J]. International Journal of Solids and Structures,1989,25(4):407-429.
    [11]
    BAŽANT Z P,CHEN E P. Scaling of structural failure[J]. Advances in Mechanics,1999,50(10):593-627.
    [12]
    BAŽANT Z P,LEWIS G. Scaling of structural strength[M]. Oxford:Elsevier,2005.
    [13]
    BAŽANT Z P. Size effect in blunt fracture,concrete,rock,metal[J]. Journal of Engineering Mechanics,1984,110(4):518-535.
    [14]
    HU X Z,WITTMANN F H. Size effect on toughness induced by crack close to free surface[J]. Engineering Fracture Mechanics,2000,65(2):209-221.
    [15]
    DUAN K,HU X Z,WITTMANN F H. Explanation of size effect in concrete fracture using non-uniform energy distribution[J]. Materials and Structures,2002,35(6):326-331.
    [16]
    HU X Z,DUAN K. Size effect:influence of proximity of fracture process zone to specimen boundary[J]. Engineering Fracture Mechanics,2007,74(7):1093-1100.
    [17]
    HU X Z,DUAN K. Size effect and quasi-brittle fracture:the role of FPZ[J]. International Journal of Fracture,2008,154(1):3-14.
    [18]
    HU X Z,DUAN K. Mechanism behind the size effect phenomenon[J]. Journal of Engineering Mechanics,2010,136(1):60-68.
    [19]
    YU Q,LE J L,HOOVER C G,et al. Problems with Hu-Duan boundary effect model and its comparison to size-shape effect law for quasi-brittle fracture[J]. ASCE Journal of Engineering Mechanics,2010,136(1):40-50.
    [20]
    杜修力,金浏,李冬. 混凝土与混凝土结构尺寸效应述评(Ⅰ):材料层次[J]. 土木工程学报,2017(9):28-45.
    [21]
    BAŽANT Z P,KIM J K. Size effect in shear failure of longitudinally reinforced beams[J]. ACI Journal,1984,81(5):456-468.
    [22]
    BAŽANT Z P,YU Q. Designing against size effect on shear strength of reinforced concrete beams without stirrups:Ⅰ formulation[J]. Journal of Structural Engineering,2005,131(12):1877-1885.
    [23]
    YU Q,BAŽANT Z P. Can stirrups suppress size effect on shear strength of RC beams?[J]. ASCE Journal of Structural Engineering,2011,137(5):607-617.
    [24]
    XU C,JIN L,DING Z X,et al. Size effect tests of high-strength RC columns under eccentric loading[J]. Engineering Structures,2016,126:78-91.
    [25]
    JIN L,DU M,D X L,et al. Size effect on the failure of stirrupconfined reinforced concrete columns under axial compression[J]. Engineering Mechanics,2018,35(5):102-110.
    [26]
    李振宝,解咏平,杜修力,等. 单调荷载作用下钢筋混凝土柱受弯性能尺寸效应试验研究[J]. 建筑结构学报,2013,34(12):77-85.
    [27]
    李振宝,解咏平,杜修力,等. 低周反复荷载作用下钢筋混凝土柱受弯性能尺寸效应试验研究[J]. 建筑结构学报,2013,34(12):86-93.
    [28]
    李振宝,解咏平,杜修力,等. 钢筋混凝土短柱受剪性能尺寸效应研究[J]. 土木工程学报,2014(6):26-33.
    [29]
    李振宝,于春义,解咏平,等. 高强钢筋混凝土柱受弯性能的尺寸效应研究[J]. 工业建筑,2022,52(6):71-78,107.
    [30]
    杜修力,金浏,李冬. 混凝土与混凝土结构尺寸效应述评(Ⅱ):构件层次[J]. 土木工程学报,2017,50(11):24-44.
    [31]
    钱觉时,杨再富,黄煜镔,等. 高强混凝土强度尺寸效应的试验研究[J]. 土木工程与管理学报,2004,21(1):1-4.
    [32]
    高志扬,许力,何林,等. 高强混凝土抗压强度尺寸效应综述[J]. 混凝土,2011(5):33-35.
    [33]
    苏捷,方志. 普通混凝土与高强混凝土抗压强度的尺寸效应[J]. 建筑材料学报,2013,16(6):1078-1081.
    [34]
    梁书亭,丁大钧,陆勤. 钢筋混凝土复合配箍柱铰的延性和抗震耗能试验研究[J]. 工业建筑,1994,24(11):16-20,36.
    [35]
    中华人民共和国住房和城乡建设部. 混凝土结构设计标准:GB/T 50010—2010[S]. 北京:中国建筑工业出版社,2024.
    [36]
    University of California,Berkeley. PEER structural performance database[EB/OL].[ 2024-10-22]. http:// nisee.berkeley.edu/spd.
    [37]
    沈聚敏,翁义军. 钢筋混凝土构件的变形和延性[J]. 建筑结构学报,1980(2):47-58.
    [38]
    朱伯龙,张琨联. 矩形及环形截面压弯构件恢复力特性的研究[J]. 同济大学学报,1981(2):1-10.
    [39]
    陆勇,张国峰,TASSIOS T P,等. 钢筋砼模型柱在循环荷载作用下性能的比较研究[J]. 建筑结构,1994(9):13-23.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (56) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return