Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Included in the Hierarchical Directory of High-quality Technical Journals in Architecture Science Field
Volume 54 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
QIN Wenbo, ZHOU Cheng, CHEN Jian, WANG Fan, LIU Wenli. Digital Twin-Based Platform Framework for Metro Bridge and Tunnel Structure Service[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 43-50. doi: 10.3724/j.gyjzG24010401
Citation: QIN Wenbo, ZHOU Cheng, CHEN Jian, WANG Fan, LIU Wenli. Digital Twin-Based Platform Framework for Metro Bridge and Tunnel Structure Service[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 43-50. doi: 10.3724/j.gyjzG24010401

Digital Twin-Based Platform Framework for Metro Bridge and Tunnel Structure Service

doi: 10.3724/j.gyjzG24010401
  • Received Date: 2024-01-04
    Available Online: 2024-04-23
  • With the rapid development of metro networks in major cities in China, the challenges and bottlenecks faced by the operation and maintenance management of metro bridge and tunnel structures have become increasingly significant. In order to improve the structural safety of metro bridges and tunnels in operation, a digital twin-based platform framework for metro bridge and tunnel structure service was proposed. First, the application requirements of digital twins in the operation and maintenance of metro bridge and tunnel structures were analyzed. Then, the digital twin model structure, operation mechanism and platform architecture design were proposed based on those requirements. Finally, the functional application of digital twins for operations and maintenances of metro bridges and tunnels were elaborated, which would provide a new technical support program for operation and maintenance management of urban rail transportation facilities and structures.
  • loading
  • [1]
    DING L Y, XU J. A review of metro construction in China:organization, market, cost, safety and schedule[J]. Frontiers of Engineering Management, 2017, 4(1):4-19.
    [2]
    陈华鹏,鹿守山,雷晓燕,等.数字孪生研究进展及在铁路智能运维中的应用[J].华东交通大学学报, 2021, 38(4):27-44.
    [3]
    王楠,陈亚冬.基于数字孪生的城市轨道交通智慧运维应用[J].城市轨道交通研究, 2023, 26(11):194-197.
    [4]
    JIANG F, MA L, BROYD T, et al. Digital twin and its implementations in the civil engineering sector[J/OL]. Automation in Construction, 2021, 130.[2024-01-04]. https://doi.org/10.00161/j.autcon.2021.103838.
    [5]
    周飞飞,余健,王青.杭州地铁土建设施维护成本控制探讨[J].现代城市轨道交通, 2017(10):39-41.
    [6]
    翟利华,袁泉,李晓军,等.隧道服役性能指标在广州地铁盾构隧道健康状态评估中的应用[J].城市轨道交通研究, 2019, 22(12):140-144.
    [7]
    李浩然,王子恒,杨起帆,等.复杂网络下地铁灾害链演化模型与风险分析[J].中国安全科学学报, 2021, 31(11):141-147.
    [8]
    郭杰,朱玉明,李夏晶,等.基于数字孪生的城市地下综合管廊应用研究[J].计算机仿真, 2022, 39(4):119-123.
    [9]
    李涛,李晓军,徐博,等.地下工程数字孪生研究进展与若干关键理论技术[J].土木工程学报, 2022, 55(增刊2):29-37.
    [10]
    刘少鹏,邓斌,曹影峰,等.桥隧工程GIS+BIM正向设计方法与应用[J].隧道建设(中英文), 2023, 43(4):674-689.
    [11]
    连巧娜,王晓萌.城市轨道交通桥隧综合监测系统设计[J].现代城市轨道交通, 2022(4):87-93.
    [12]
    全国城市客运标准化技术委员会.城市轨道交通设施运营监测技术规范第2部分:桥梁:GB/T 39559.2-2020[S].北京:中国标准出版社,2020.
    [13]
    全国城市客运标准化技术委员会.城市轨道交通设施运营监测技术规范第3部分:隧道:GB/T 39559.3-2020[S].北京:中国标准出版社,2020.
    [14]
    HUANG M Q, NINIC'J, ZHANG Q B. BIM, machine learning and computer vision techniques in underground construction:Current status and future perspectives[J/OL]. Tunnelling and Underground Space Technology, 2021, 108[2024-01-04]. https://doi.org/10.1016/j.tust.2020.103677.
    [15]
    顾亦宁,艾青,王少纯,等.基于代理模型的地铁隧道结构变形预测数字孪生方法[J].城市轨道交通研究, 2023, 26(9):133-137.
    [16]
    王景春,房思思,李晓萌,等.以可靠性为中心的维修方法及其在隧道中的应用[J].中国工程科学, 2017, 19(6):61-65.
    [17]
    CHEN R, ZHOU C, CHENG L. Computer-vision-guided semi-autonomous concrete crack repair for infrastructure maintenance using a robotic arm[J/OL]. AI in Civil Engineering, 2022, 1.[2024-01-04]. https://doi.org/10.10007/s43503-022-0007-7.
    [18]
    XU J, DING L Y, LUO H B, et al. Near real-time circular tunnel shield segment assembly quality inspection using point cloud data:A case study[J/OL]. Tunnelling and Underground Space Technology, 2019.[2024-01-04]. https://doi.org/10.1016/j.tust.2019.102998.
    [19]
    WANG F, CHEN J E. Efficient modeling of random fields by using Gaussian process inducing-point approximations[J/OL]. Computers and Geotechnics, 2023, 157.[2024-01-04]. https://doi.org/10.1016/j.compgeo.2023.105304.
    [20]
    LIU W L, SHAO Y X, LI C, et al. Development of a non-Gaussian copula Bayesian network for safety assessment of metro tunnel maintenance[J/OL]. Reliability Engineering&System Safety, 2023, 238.[2024-01-04]. https://doi.org/10.1016/j.ress.2023.109423.
    [21]
    ZHANG Y S, DING L Y, LOVE P E D. Planning of deep foundation construction technical specifications using improved case-based reasoning with weighted k-nearest neighbors[J/OL]. Journal of Computing in Civil Engineering, 2017, 31(5).[2024-01-04]. https://doi.org/10.1016/(ASCE) CP.1943-5487.0000682.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (93) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return