Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HU Jianlin, XUE Jinhao, GUO Jiangfeng, MENG Zhipeng, LIU Yang, ZHENG Ruihai. Experimental Study on Influential Factors for Shear Properties of Interfaces Between Anchor Bolts and Soil Under Different Confining Pressures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 200-205. doi: 10.3724/j.gyjzG22090804
Citation: HUANG Haifeng, YIN Yang, ZHOU Yi, YANG Didan. A Review on Digital Twin Application Research for Urban Water Security[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(2): 144-154. doi: 10.3724/j.gyjzG23120902

A Review on Digital Twin Application Research for Urban Water Security

doi: 10.3724/j.gyjzG23120902
  • Received Date: 2023-12-09
    Available Online: 2024-04-23
  • Digital twin technology is being rapidly applied and developed in the field of urban water security. Firstly, the paper sorted out and analyzed the current situation of digital twin technology applications for urban water security, explained the framework of urban water security system based on digital twins, and introduced the key techniques and capability requirements in the digital twin system from the perception and collection layer, infrastructure layer, data layer, model layer, knowledge layer, and application layer. Secondly, the application progress of digital twins in urban water security was reviewed, including flood control and disaster reduction, water resource conservation and intensive safe utilization, water ecological protection, and intelligent water conservancy engineering. The construction progress and application effectiveness of digital twin platforms for water conservancy projects in typical cities were introduced. Finally, the paper summarized the challenges faced by the in-depth application of digital twins in the field of urban water security and proposed prospects, aiming to provide a reference and guidance for the construction of urban water security capabilities that integrate digital twin technology.
  • [1]
    "十四五"水安全保障规划印发实施[J].中国水利,2022(02):4.
    [2]
    王浩,左其亭,蒋云钟.关于国家水安全学的设立及学科体系构建的探讨[J].水科学进展,2022,33(06):859-867.
    [3]
    初亚奇.水生态与水安全关联耦合视角下的寒地海绵城市规划研究[D].天津:天津大学,2020.
    [4]
    BISWAS A K, United Nations Water Conference; Summary And Main Documents[M]. Oxford:Pergamon Press,1978.
    [5]
    第二届世界水论坛及部长级会议在海牙召开[J].水利水电科技进展,2000(02):9.
    [6]
    杨丰顺.城市水安全风险评价理论方法及应用研究[D].武汉:武汉大学,2013.
    [7]
    邬樱,李爱群."城市-建筑-人"耦合视角下数字孪生技术应用与分圈层场景构建[J].工业建筑,2023,53(04):180-189.
    [8]
    杨芳,宋利祥,李旭东,等.珠江流域水旱灾害防御"四预"系统模型研发及应用[J].中国水利,2023(04):10-14.
    [9]
    于琪洋.对水资源集约节约安全利用的思考[J].中国水利,2021(21):34-37.
    [10]
    黄艳,杨国俊,王勤思,等.数字孪生三峡建设关键技术难点与解决方案[J].中国水利,2023(19):27-34.
    [11]
    姜建华,曾毅,陈志辉,等.基于BIM与数字孪生技术的城市数字化转型探索[J].工业建筑,2023,53(S1):789-791.
    [12]
    顿晓晗,王源楠,肖文,等.基于数字孪生技术的智慧水利应用研究[C]//中国水利学会2021学术年会论文集第四分册,2021:4.
    [13]
    周毅,高芳,张静,等.黄孝河、机场河水环境综合治理数字孪生平台的设计与开发[J].环境工程,2023,41(11):104-109.
    [14]
    宁亚芸.AR技术基于数字孪生在智慧水务日常巡检中的应用[J].智能建筑与智慧城市,2022(07):170-173.
    [15]
    LI W Z, ZHAI Y F. Concept, key technologies and challenges of digital twin riverbasin[C]//2022 IEEE 12th International Conference on Electronics Information and Emergency Communication (ICEIEC). Beijing:2022.
    [16]
    SUGUMAR G, MATHUR A. Assessment of a method for detecting process anomalies using digital-twinning[C]//201915th European Dependable Computing Conference (EDCC). Naples:2019.
    [17]
    张岑,张志强,朱芋奇,等.数字孪生密云水库流域建设方案构想[J].北京水务,2022(04):4-9.
    [18]
    陈言樑.基于智慧水务总体架构及建设内容[J].数字技术与应用,2022,40(11):160-162.
    [19]
    郑宇祺.智慧水务云平台技术的应用与发展[J].智能建筑与智慧城市,2023(04):175-177.
    [20]
    叶陈雷,徐宗学.城市洪涝数字孪生系统构建与应用:以福州市为例[J].中国防汛抗旱,2022,32(07):5-11

    +29.
    [21]
    BANNOUR F, SOUIHI S, MELLOUK A. Distributed SDN Control:Survey, Taxonomy, and Challenges[J]. IEEE Communications Surveys&Tutorials:333-354.
    [22]
    洪继龙,马赛,王慧敏,等.基于数字孪生技术的智慧水务系统建设[J].江苏水利,2022(S2):45-47+51.
    [23]
    蔡阳.以数字孪生流域建设为核心构建具有"四预"功能智慧水利体系[J].中国水利,2022(20):2-6+60.
    [24]
    冶运涛,蒋云钟,寇怀忠,等.数字孪生流域的基础模型、演化路径与评判准则[J].华北水利水电大学学报(自然科学版),2023,44(04):27-38.
    [25]
    邓中翰,周大良,陶柯.视频AR、AIoT、数字孪生协同技术在智慧水利中的应用[J].江苏水利,2022(S2):14-17.
    [26]
    VERMA A K, JHA M K, MAHANA R K. Evaluation of HEC-HMS and WEPP for simulating watershed runoff using remote sensing and geographical information system[J].Paddy&Water Environment, 2010, 8(2):131-144.
    [27]
    程艳,裴盼盼,张祥祥.国内外流域水文模型研究进展[J].现代农业科技,2023(23):133-136+140.
    [28]
    张路.基于MODFLOW的日喀则市地下水流数值模拟[D].南京:南京大学,2020.
    [29]
    韩金旭,张翔宇,刘姝芳,等.MIKE SHE模型在杭锦旗引黄灌区的应用研究[J].人民黄河,2022,44(10):150-153.
    [30]
    孙博闻,杨晰淯,暴柱,等.基于数据同化的深水湖库水温中短期预报[J].水利学报,2022,53(12):1445-1455.
    [31]
    ALPEREN C I, ARTIGUE G, KURTULUS B, et al. A Hydrological Digital Twin By Artificial Neural Networks For Flood Sim-ulation In Gardon De Sainte-Croix Basin, France[C]//IOP Conference Series:Earth and Environmental Science. Britain:IOP Publishing, 2021.
    [32]
    佟保根,黄屿璁,梁礼永.徐州市铜山区数字孪生城区防洪指挥平台建设[J].江苏水利,2022(S2):32-37.
    [33]
    冯鹏飞.数字孪生智慧城市排水系统建模研究[D].汕头:汕头大学,2021.
    [34]
    黄容,杨宗国,陈正,等.深圳市排水管网数字孪生实现关键路径[J/OL].水利信息化:1-8[2023-12-05

    ].http://kns.cnki.net/kcms/detail/32.1819.TV.20231110.1445.002.html.
    [35]
    徐智勇,舒德伟,陈昌黎,等.数字孪生市政排水综合管理与预警调度平台设计与应用[J].水利水电快报,2023,44(08):112-116

    +126.
    [36]
    刘志成,谢天云,安晓伟.数字孪生流域方案研究[C]//2022中国水利学术大会论文集(第四分册).黄河水利出版社,2022:195-199.
    [37]
    王权森.长江中下游行蓄洪空间数字孪生建设方案构想[J].人民长江,2022,53(02):182-188.
    [38]
    封敏.大数据驱动的流域洪涝灾害智能决策引擎关键技术研发[J].中国水利,2023(11):45-48.
    [39]
    许建国.基于数字孪生的供水协同决策支持平台建设与应用[J].给水排水,2022,58(10):185-190.
    [40]
    魏会敏.数字孪生河北省南水北调配套工程建设思考[J].人民黄河,2023,45(S1):188-189.
    [41]
    吴林锋,常露,朱金华.数字孪生技术在智慧供水中的实践应用[J].江苏水利,2022(S2):58-60.
    [42]
    王利,贾晓冬,刘猛猛.山东济宁市智慧水利体系建设探索及思考[J].中国水利,2023(11):49-51.
    [43]
    牟昀丽,梁永荣,吴凯.面向智慧水利的县域水资源监管集成平台设计:以无锡市滨湖区为例[J].江苏水利,2022(S2):52-57.
    [44]
    张亚丽.数字孪生技术在智慧供水建设中的实践探索[J].中国信息化,2022(05):101-102.
    [45]
    陈国标.基于数字孪生技术的九江城市智慧水务平台设计与实现[J].人民珠江,2022,43(06):86-93.
    [46]
    KONG Q, XU H, CHEN Y. The path of introducing digital twin technology into river chief system[C]//20228th International Conference on Hydraulic and Civil Engineering:Deep Space Intelligent Development and Utilization Forum (ICHCE). Xi'an:2022.
    [47]
    刘斌,蒋涛,吉庆伟,等.数字孪生技术与智慧水利系统的融合及应用[J].江苏水利,2022(S2):41-44.
    [48]
    高英,王鹏,屈志刚,等.面向数字孪生贾鲁河流域的洪水预报模型与应用[J].华北水利水电大学学报(自然科学版),2023,44(04):47-51.
    [49]
    周琪,徐云飞,白建民,等.流域水质精细化治理思路[J].市政技术,2023,41(06):171-181

    +253.
    [50]
    卢惠芳,郑桂忠,袁福怀.基于数字孪生技术的中顺大围智慧流域建设途径研究[J].科技创新与应用,2023,13(10):103-106.
    [51]
    尤林贤,李超,钟惠钰,等.建设数字孪生工程赋能流域综合治理:以数字孪生太浦闸建设实践与探索为例[J].水利发展研究,2023,23(03):30-33.
  • Relative Articles

    [1]ZHU Mingqiao, TAN Yiping, TAN Xiaopeng, DONG Jiarui, LIU Wanli. Seismic Performance Analysis of UHPC Composite Columns Confined by GFRP Tubes[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 211-219. doi: 10.3724/j.gyjzG23071011
    [2]ZHANG Xiaodong. Comparisons of Seismic Performances of Subway Stations Between Composite Structure and Reinforced-Concrete Structure Based on Daikai Station[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(7): 139-146. doi: 10.13204/j.gyjzG22090514
    [3]WU Junlin, YANG Hui, GUO Zhengxing. Numerical Analysis of Seismic Performance of Local Post-Tensioned Prestressed Assembled Concrete Frame Beam-Column Joints[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(3): 29-34,28. doi: 10.13204/j.gyjzG22081301
    [4]XIONG Qingqing, GUI Haiwei, ZHANG Wang, LI Ge. Finite Element Parametric Analysis of Seismic Performance of Wide-Flange L-Shaped CFST Composite Columns with Built-in PBL[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 7-16,173. doi: 10.13204/j.gyjzG22042402
    [5]LIU Lianbo, ZHOU Ming, WANG Xintang. Mechanical Property Experiments and Finite Element Analysis of Joints Between H-Steel Beams and Columns After Fire[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(12): 107-112. doi: 10.13204/j.gyjzG22092306
    [6]WANG Weiyong, YANG Qibo, LIANG Zhanshuo, OU Ying, JIANG Xianchun. Seismic Response of the Joint Between Steel Truss Concrete Composite Shear Wall and Steel Coupling Beam[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(11): 39-48. doi: 10.13204/j.gyjzG22040401
    [7]LI Bin, LUO Yanyan, LI Xingbo. Seismic Performance Test and Finite Element Analysis of Monolithic Precast Shear Wall with Partially-Connected Vertical Distributed Steel Bars[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(5): 51-59,23. doi: 10.13204/j.gyjzG21040601
    [8]ZHANG Xiangwei, LIU Jiming, WU Chenglong, WANG Chuanyi, TAN Wenya, QIAO Guangde. RESEARCH ON ASEISMIC PERFORMANCES OF BASE JOINTS FOR PREFABRICATED COMPOSITE STEEL-CONCRETE COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(7): 137-144. doi: 10.13204/j.gyjzG20070705
    [9]GAO Ziqi, ZHANG Jintao, ZHANG Hao, HAO Han, GUO Rui. FINITE ELEMENT ANALYSIS OF FLEXURAL BEHAVIOR OF DAMAGED RC BEAMS REINFORCED BY FRP[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(5): 44-50,43. doi: 10.13204/j.gyjzG20110321
    [10]ZHANG Ailin, SU Lei, CAO Zhiliang, PU Shuanghui, LIN Haipeng. EXPERIMENTAL RESEARCH AND FINITE ELEMENT ANALYSIS ON SESIMIC BEHAVIORS OF Z-SHAPED BEAM-TO-COLUMN BOLTED JOINT WITH DOUBLE CONNECTION PLATES[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(2): 59-65,89. doi: 10.13204/j.gyjzG21012710
    [11]CHEN Weigang, ZHANG Huikai, ZHOU Xiongliang, SHU Ganping, ZHOU Guangen, QIN Ying. RESEARCH ON SEISMIC BEHAVIOR OF CONNECTIONS BETWEEN DOUBLE-SKIN MULTI-CAVITY OF COMPOSITE WALL WITH STEEL TRUSS AND H-SHAPED STEEL BEAM[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 19-23,28. doi: 10.13204/j.gyjz202003004
    [12]LAN Tao, SHEN Cunjie, LI Ran, JIANG Ziqin, CHENG Kuikui. NUMERICAL STUDY ON SEISMIC BEHAVIOR OF EARTHQUAKE-RESILIENT DUCTILITY-REINFORCED PREFABRICATED OPENING-WEB STEEL CHANNEL BEAM-COLUMN JOINT[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 43-50. doi: 10.13204/j.gyjz202003008
    [13]PANG Rui, DING Shusu, WANG Lu, WANG Yixiao, WANG Wenjie. FINITE ELEMENT ANALYSIS OF AXIAL COMPRESSION PROPERTIES OF PREFABRICATED SRCT SHEAR WALL STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(9): 156-162. doi: 10.13204/j.gyjzG19112401
    [14]MEN Yiang, WANG Xinwu, YU Yongqiang, SHI Qiang. RESEARCH ON SEISMIC BEHAVIOR OF BEAM-COLUMN JOINTS OF PREFABRICATED STEEL FRAME STRUCTURES[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(3): 156-159,135. doi: 10.13204/j.gyjz202003027
    [15]He Xuejun, Yu Xiaoguang, Zhou Chaoyang, Liu Shu, Wu Xukang. FINITE ELEMENT ANALYSIS OF SEISMIC BEHAVIOR OF RC FRAME JOINTS INDIRECTLY STRENGTHENED WITH TIED AND LOCK-ANCHORED CFRP SHEETS[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(5): 157-161. doi: 10.13204/j.gyjz201505033
    [16]Ni Zhen, Ma Jing, Liu Xuechun, Zhang Ailin. STUDY ON SEISMIC PERFORMANCE OF MODULAR PREFABRICATED STEEL FRAME[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(08): 19-22.
    [17]Yang Yiting, Gong Chao, Hou Zhaoxin, Li Chengjiang. FINITE ELEMENT ANALYSIS OF MECHANICAL BEHAVIOR OF NEW TYPE HIGH STRENGTH STEEL-CONCRETE FLAT BEAM[J]. INDUSTRIAL CONSTRUCTION, 2014, 44(03): 39-42. doi: 10.13204/j.gyjz201403010
    [18]Wei Demin, Guo Lei, Zhang Haiyan. ANALYSIS OF INFLUENCE FACTORS ON SEISMIC PERFORMANCE OF REINFORCED CONCRETE STAIRS[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(10): 61-65,70. doi: 10.13204/j.gyjz201310014
    [19]Wang Xiufen, Wang Tiecheng. EXPERIMENTAL STUDY ON THE SEISMIC PERFORMANCE OF RC FRAMES WITH SPECIAL-SHAPED COLUMNS[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(5): 28-32. doi: 10.13204/j.gyjz201005005
    [20]Peng Xiaotong, Shen Lili, Lin Chen. FINITE ELEMENT ANALYSIS OF STEEL FRAME-REINFORCED CONCRETE INFILL WALL STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(6): 107-110. doi: 10.13204/j.gyjz201006024
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 5.7 %FULLTEXT: 5.7 %META: 93.6 %META: 93.6 %PDF: 0.8 %PDF: 0.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.8 %其他: 12.8 %上海: 0.8 %上海: 0.8 %六安: 0.8 %六安: 0.8 %北京: 2.3 %北京: 2.3 %十堰: 2.3 %十堰: 2.3 %南京: 1.1 %南京: 1.1 %南昌: 0.4 %南昌: 0.4 %南通: 1.1 %南通: 1.1 %台州: 1.1 %台州: 1.1 %合肥: 1.1 %合肥: 1.1 %咸阳: 0.4 %咸阳: 0.4 %嘉兴: 1.9 %嘉兴: 1.9 %天津: 7.5 %天津: 7.5 %安康: 0.4 %安康: 0.4 %宣城: 2.3 %宣城: 2.3 %常州: 1.5 %常州: 1.5 %常德: 0.4 %常德: 0.4 %广州: 0.4 %广州: 0.4 %廊坊: 0.4 %廊坊: 0.4 %张家口: 6.0 %张家口: 6.0 %德州: 1.1 %德州: 1.1 %扬州: 3.4 %扬州: 3.4 %昆明: 0.4 %昆明: 0.4 %杭州: 4.5 %杭州: 4.5 %格兰特县: 0.4 %格兰特县: 0.4 %武汉: 0.4 %武汉: 0.4 %温州: 1.9 %温州: 1.9 %湖州: 0.8 %湖州: 0.8 %漯河: 18.9 %漯河: 18.9 %烟台: 0.4 %烟台: 0.4 %石家庄: 0.4 %石家庄: 0.4 %芒廷维尤: 5.3 %芒廷维尤: 5.3 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 0.4 %苏州: 0.4 %葫芦岛: 0.8 %葫芦岛: 0.8 %衢州: 0.4 %衢州: 0.4 %西宁: 1.5 %西宁: 1.5 %西安: 0.8 %西安: 0.8 %西雅图: 0.8 %西雅图: 0.8 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.5 %运城: 1.5 %邯郸: 1.9 %邯郸: 1.9 %郑州: 3.4 %郑州: 3.4 %重庆: 0.4 %重庆: 0.4 %长沙: 3.8 %长沙: 3.8 %马鞍山: 0.4 %马鞍山: 0.4 %其他上海六安北京十堰南京南昌南通台州合肥咸阳嘉兴天津安康宣城常州常德广州廊坊张家口德州扬州昆明杭州格兰特县武汉温州湖州漯河烟台石家庄芒廷维尤芝加哥苏州葫芦岛衢州西宁西安西雅图贵阳运城邯郸郑州重庆长沙马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (134) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return