Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 55 Issue 3
Mar.  2025
Turn off MathJax
Article Contents
WU Jiancong, RUAN Jiancou. Research on Deformation Laws of Deep Excavation Based on Parameters of Silt in Reclaimed Areas[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(3): 237-244. doi: 10.3724/j.gyjzG23120819
Citation: WU Jiancong, RUAN Jiancou. Research on Deformation Laws of Deep Excavation Based on Parameters of Silt in Reclaimed Areas[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(3): 237-244. doi: 10.3724/j.gyjzG23120819

Research on Deformation Laws of Deep Excavation Based on Parameters of Silt in Reclaimed Areas

doi: 10.3724/j.gyjzG23120819
  • Received Date: 2023-12-08
    Available Online: 2025-06-07
  • Publish Date: 2025-03-20
  • The current method of land reclamation is still incomplete. Due to the insufficient understanding of the nature of the silt in the reclamation area by engineering personnel, the design parameters are not accurate enough, making it very easy for problems to occur during the construction process. Therefore, the study first modeled the foundation excavation in the reclamation area and simulated the finite element calculation of the excavation of the foundation excavation. Then the back propagation neural network (BPNN) model was used to establish the nonlinear functional relations between coating parameters and deformation values. Through dynamic back analysis, the BPNN model was used for dynamic back analysis. By utilizing the nonlinear relations between the mechanical parameters in the soil layer and the deformation value of the foundation excavation, four sets of silt layer parameters at different time periods were obtained. The BPNN prediction model was optimized by using Genetic Algorithm (GA). During the research process, it was found that the structure and number of nodes contained in the hidden layer of the prediction model were directly related to their learning ability. For this purpose, the study used the least squares method to fit and calculate the relevant data, and obtained the optimal combination of hidden layer structures. From this, a deformation prediction model for underground foundation excavation based on silt layer parameters was obtained. Through experiments, the total absolute error of the model was 20.46 mm, and the average prediction accuracy was 98.48%. The deformation patterns of foundation excavation could be accurately predicted based on the parameters obtained from back analysis.
  • loading
  • [1]
    张生杰,谭勇. 基于LSTM算法的基坑变形预测[J]. 隧道建设,2022(1):113- 120.
    [2]
    刘超,邹玉强,赵志达,等. 深基坑设计参数反演分析与变形预测系统应用[J]. 施工技术,2020,49(13):56- 60.
    [3]
    赵一行,詹刚毅,石钰锋,等. 某超深圆形基坑受力变形的尺寸效应分析[J]. 华东交通大学学报,2021,38(5):23- 29.
    [4]
    计鹏,李栋梁,左战旗,等. 基于反演分析的地面超载对深基坑变形影响研究[J]. 铁道建筑技术,2021(9):24- 28.
    [5]
    张炜煜. 东沙站基坑地连墙变形及m值反演分析[J]. 建材与装饰,2021(32):57- 58.
    [6]
    高德风,周傲,冯亚腾,等. 太湖明挖隧道围护结构变形监测与参数智能反演[J]. 土工基础,2020,34(3):385- 390.
    [7]
    倪小东,王琛,唐栋华,等. 软土地区深基坑超大变形预警及诱因分析[J]. 中南大学学报(自然科学版),2022(6):2245- 2254.
    [8]
    苟胜荣,付江涛. 基于趋势性分析模型的地铁基坑变形预测研究[J]. 地理空间信息,2020(1):115- 118.
    [9]
    万荣辉,柯龙. 基于粗集理论算法-脊波神经网络的深基坑变形预测与应用[J]. 安全与环境学报,2020,20(1):47- 51.
    [10]
    王飞. 基于局部均值分解和PSO-RVM-ARIMA模型的基坑变形预测研究[J]. 河南科学,2021(10):1649- 1654.
    [11]
    闫旭. 土建施工中深基坑支护施工技术的运用探究[J]. 商品与质量·建筑与发展,2020(8):82- 83.
    [12]
    范红伟. 探讨高层建筑工程深基坑支护施工技术[J]. 建材发展导向,2023(4):178- 180.
    [13]
    连保康,马凯伦. 空间受限条件下多风险源的深基坑施工案例研究[J]. 现代隧道技术,2022,59(增刊1):1095- 1101.
    [14]
    吴刚,赵晨玲,张晓静. 软土地区临近地铁基坑支护工程案例分析与总结[J]. 中国水运,2017,17(8):335- 336.
    [15]
    符师. 关于深挖填土基坑监测及安全性的思考[J]. 测绘与勘探,2022,4(3):54- 56.
    [16]
    ZHANG Q W. Deformation analysis of deep foundation pit excavation in China under time-space effect[J]. Geotechnical Research,2020,7(3):146- 152.
    [17]
    方少华. 土建施工中深基坑支护施工技术的运用探究[J]. 工程技术(文摘版)·建筑,2020(1):112- 113.
    [18]
    李新民. 分析高层建筑工程深基坑支护施工技术[J]. 智能城市,2017,3(9):166- 166.
    [19]
    纪国勇. 深基坑支护技术在房屋建筑施工中的应用[J]. 建材与装饰,2020(20):1- 2.
    [20]
    王凡,樊凡,刘超飞,等. 临河富水砂层深基坑降水方案及对周边环境影响分析[J]. 建筑技术开发,2022,49(5):161- 164.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (49) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return