Citation: | YANG Yinqiang, KANG Shuai, WANG Zifa, HE Zhongying, TENG Hui. Research on Damage Identification for Steel Frames Based on Convolutional Autoencoder and Correlation Function[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 78-86. doi: 10.3724/j.gyjzG23102311 |
[1] |
赵一男, 公茂盛, 杨游.结构损伤识别方法研究综述[J].世界地震工程, 2020, 36(2):73-84.
|
[2] |
ALVANDI A, CREMONA C.Assessment of vibration-based damage identification techniques[J].Journal of Sound and Vibration, 2006, 292(1/2):179-202.
|
[3] |
TOMASZEWSKA A.Influence of statistical errors on damage detection based on structural flexibility and mode shape curvature[J].Computers and Structures, 2010, 88(3/4):154-164.
|
[4] |
RADZIENSKI M, KRAWCZUK M, PALACZ M.Improvement of damage detection methods based on experimental modal parameters[J]. Mechanical Systemsand Signal Processing, 2011, 25(6):2169-2190.
|
[5] |
WORDEN K, MANSON G, FIELLER N R J. Damage detectionusing outlier analysis [J].Journal of Soundand Vibration, 2000, 229(3):647-667.
|
[6] |
BALSAMO L, BETTI R. Data-based structural health monitoring using small training datasets[J].Structural Control and Health Monitoring, 2015, 22(10): 1240-1264.
|
[7] |
GARCIA D, TCHERNIAK D.An experimental study on the data-driven structural health monitoring of large wind turbine blades using a single accelerometer and actuator [J].Mechanical Systems and Signal Processing, 2019, 127(15):102-119.
|
[8] |
颜王吉, 王朋朋, 孙倩, 等.基于振动响应传递比函数的系统识别研究进展[J].工程力学, 2018, 35(5):1-9.
|
[9] |
YAN W J, ZHAO M Y, SUN Q, et al.Transmissibility-based system identification for structural health monitoring:fundamentals, approaches, and applications[J].Mechanical Systems and Signal Processing, 2019, 117:453-482.
|
[10] |
宗周红, 任伟新, 阮毅. 土木工程结构损伤诊断研究进展[J]. 土木工程学报, 2003, 36(5):105-110.
|
[11] |
杨铄, 许清风, 王卓琳.基于卷积神经网络的结构损伤识别研究进展[J].建筑科学与工程学报, 2022, 39(4):38-57.
|
[12] |
ABDELJABER O, AVCI O, KIRANYAZ M S, et al. 1-D CNNs for structural damage detection: verification on a structural health monitoring benchmark data[J]. Neurocomputing, 2018, 275:1308-1317.
|
[13] |
LIN Y, NIE Z, MA H. Structural damage detection with automatic feature-extraction through deep learning[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(12):1025-1046.
|
[14] |
李雪松, 马宏伟, 林逸洲.基于卷积神经网络的结构损伤识别[J].振动与冲击, 2019, 38(1):159-167.
|
[15] |
骆勇鹏, 王林堃, 廖飞宇, 等.基于一维卷积神经网络的结构损伤识别[J].地震工程与工程振动, 2021, 41(4):145-156.
|
[16] |
成浩维, 资文杰, 彭双, 等.基于半监督学习的三维Mesh建筑物立面提取与语义分割方法[J].郑州大学学报(理学版), 2023, 55(4):8-15.
|
[17] |
GUO Y, JI T, WANG Q, et al. Unsupervised anomaly detection in IoT systems for smart cities[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(4): 2231-2242.
|
[18] |
NI F T, ZHANG J, NOORI M N.Deep learning for data anomaly detection and datacompression of a long-span suspension bridge[J].Computer-Aided Civil and Infrastructure Engineering, 2019, 35 (7):685-700.
|
[19] |
LIN S Z, SHI Y, XUE Z.Character-level intrusion detection based on convolutional neural networks[C]//International Joint Conference on Neural Networks (IJCNN). Rio de Janeiro: 2018:1-8.
|
[20] |
郑婷婷. 基于堆叠稀疏自编码器和分布式应变的桥梁表面裂缝检测[D].西安:长安大学, 2021.
|
[21] |
YU J, ZHOU X. One-dimensional residual convolutional autoencoder based feature learning for gearbox fault diagnosis[J].IEEE Transactions on Industrial Informatics, 2020, 16 (10):6347-6358.
|
[22] |
CUI M L, WANG Y Q, LIN X S, et al.Fault diagnosis of rolling bearings based on an improved stack autoencoder and support vector machine[J].IEEE Sensors Journal, 2020, 21(4):4927-4937.
|
[23] |
滑世辉, 韩立国.基于深度卷积自编码网络地震数据去噪方法[J].地球物理学进展, 2023, 38(2):654-661.
|
[24] |
刘建华, 杨皓楠, 何静, 等.基于约束对抗卷积自编码记忆融合网络的故障诊断[J].电机与控制学报, 2023, 27(6):148-159.
|
[25] |
方能炜, 刘兰徽, 邢镔, 等.自相关结合灰色关联度的轴承早期故障诊断方法[J].机械科学与技术, 2023, 42(12):1972-1976.
|
[26] |
王玉山, 田良, 郭惠勇.基于加速度内积向量和灰云模型的结构损伤识别[J].重庆大学学报, 2018, 41(1):9-16.
|
[27] |
YANG Z C, WANG L, WANG H, et al.Damage detection in composite structures using vibration response under stochastic excitation[J].Journal of Sound and Vibration, 2009, 325:755-768.
|
[28] |
胡鑫, 杨智春, 王乐.基于振动响应内积向量和数据融合的结构损伤检测方法试验研究[J].振动与冲击, 2013, 32(14):109-115.
|
[29] |
付茂森. 基于卷积自编码神经网络的桥梁损伤识别研究[D].石家庄:石家庄铁道大学, 2022.
|
[30] |
AVCI O, ABDELJABER O, KIRANYAZ S, et al.Convolutional neural networks for real-time and wireless damage detection[J]. Dynamics of Civil Structures, 2020, 2:129-136.
|
[31] |
DYKE S, BERNAL D, BECK J, et al. Experimental phase II of the structural health monitoring benchmark problem[C]//Proc 16th ASCE Engineering Mechanics Conference. Colorado: 2003.
|