Wind tunnel tests were used to study the wind load of high-rise building sail-shaped tower crown. The distribution characteristics of average wind pressure and fluctuating wind pressure of sail-shaped tower crown under typical wind direction were obtained, as well as the variation of shape coefficient of each face with wind direction. The extreme value analysis method was used to obtain the extreme net wind pressure distribution of sail-shaped tower crown. The wind load spectrum characteristics of tower crown under typical wind direction were discussed and compared with the middle of tower body.The results showed that a semi-open cavity was formed by three sides of the sail-shaped tower crown, and the distribution of wind pressure inside was relatively uniform. When the sail opening was facing the wind, a significant wind-catching effect was formed. However, the net wind shape coefficient of the sails open to the wind was only 1.09 because of the upward flow from the top of the high-rise building. Due to the separation of air flow, strong wind suction and pressure pulsation were generated on the two edges of the tower crown, and the local net wind pressure extreme value was large. The special shape of the sail-shaped tower crown made the intensity of the cross wind vortex shedding when the sail opening was windward or leeward was obviously weaker than that when the flank was windward.