Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LUO Bin, WANG Huan, BAI Lianwei, REN Zhaoqing, WANG Shanshan. Experimental Study and Numerical Analysis of Hybrid Fiber Reinforced Self-Compacting Concrete Segments at High Temperatures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(5): 226-237. doi: 10.3724/j.gyjzG23071115
Citation: DU Taoming, SONG Songke, LIU Wei, QUAN Xinrui, KONG Debiao. Elastoplastic Analytical Solutions for Borehole Contraction of Bored Piles by Boring Unloading Based on Unified Strength Theory[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 188-195. doi: 10.3724/j.gyjzG23092004

Elastoplastic Analytical Solutions for Borehole Contraction of Bored Piles by Boring Unloading Based on Unified Strength Theory

doi: 10.3724/j.gyjzG23092004
  • Received Date: 2023-09-20
    Available Online: 2024-08-16
  • To quantitatively predict the process of unloading for bored piles, combining the unified strength theory (UST) with the non-associated flow rule, the elastoplastic analytical solutions of large strain and small strain for borehole contraction of bored piles were derived. And the influence of intermediate principal stress, dilatancy angle and parameters of piles on analytical values in the borehole contraction process were analyzed. The result indicated that the larger the coefficients of intermediate principal stress b and the internal friction angle of soil φ were, the smaller the dilatancy angle ψ of soil was, and the better the stability of borehole walls of bored piles was. The solutions based on the Mohr-Coulomb yield criterion and the small strain theory in a plastic state of borehole wall soil were both conservative. The larger the coefficient of intermediate principal stress b was, the larger the radial stress and the maximum circumferential stress at the same position of cylindrical borehole wall were, and the smaller the radial displacement at the same position was. With the increase in the coefficients of intermediate principal stress b, the maximum circumferential stress gradually approached the borehole wall, simultaneously, the increment of the maximum circumferential stress decreased with the increase in the coefficient of intermediate principal stress b. Both solutions for soil stress and displacement fields around the cylindrical borehole in the process of borehole contraction due to unloading by large and small strain theories all meet the requirements. The findings could be applied to the quantitative analysis for the stability of borehole wall soil during boring and the bearing characteristics of bored piles.
  • [1]
    杨砚宗. 砂土考虑卸荷效应的钻孔灌注桩试验与理论研究[D]. 上海: 同济大学, 2011.
    [2]
    龚辉. 黏性土中钻孔灌注桩径向卸荷效应及其对桩侧摩阻力的影响机制[D]. 上海: 同济大学, 2013.
    [3]
    LUKOSE A, THIYYAKK S. Analysis of cavity expansion and contraction in unsaturated residual soils[J]. Geomechanics and Engineering, 2022, 28(4): 405-419.
    [4]
    WU Y, ZHANG X F, ZHAO C, et al. Effects of soil unloading and grouting on the vertical bearing mechanism for compressive piles[J/OL]. Ocean Engineering, 2023, 271[2023-09-20]. https://doi.org/10.1016/j.oceaneng.2023.113754.
    [5]
    王振峰, 赵婷, 徐明霞, 等. 深开挖后土体卸荷导致隧道隆起变形的算法[J]. 工业建筑, 2022, 52(3): 53-59.
    [6]
    YU H S, ROWE R K. Plasticity solutions for soil behaviour around contracting cavities and tunnels[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(12): 1245-1279.
    [7]
    YU H S, HOULSBY G T. A large strain analytical solution for cavity contraction in dilation soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19(11): 793-811.
    [8]
    ZHAO C F, YANG YZ, ZHAO C, et al. Analytical solution for borehole contraction caused by radial unloading[J]. KSCE Journal of Civil Engineering, 2013, 17(1): 60-67.
    [9]
    温世游, 陈云敏, 唐晓武, 等. 排水条件下球形空腔收缩问题的弹塑性分析[J]. 岩石力学与工程学报, 2004, 23(13): 2251-2256.
    [10]
    温世游, 陈云敏, 李夕兵. 考虑应变软化特性的缩孔解析解[J]. 岩石力学与工程学报, 2002, 21(增刊2): 2432-2438.
    [11]
    张治国, 徐晨, 宫剑飞. 隧道开挖对邻近桩基变形及承载能力影响的弹塑性解答[J]. 岩石力学与工程学报, 2017, 36(1):208-222.
    [12]
    赵春风, 费逸, 赵程, 等. 无黏性土中钻孔径向卸荷收缩理论解[J]. 哈尔滨工业大学学报, 2020, 52(4):135-141.
    [13]
    MO P S, YU H S. Undrained cavity-contraction analysis for prediction of soil behavior around tunnels[J/OL]. International Journal of Geomechanics, 2017, 17(5)[2023-09-20]. https://doi.org/10.1061/(ASCE)GM.1943-5622.000081.
    [14]
    CHEN S L, ABOUSLEIMAN Y N. Drained and undrained analyses of cylindrical cavity contractions by bounding surface plasticity[J/OL]. Canadian Geotechnical Journal, 2016, 53(9)[2023-09-20].https://doi.org/10.1139/cgj-2015-0605.
    [15]
    胡云世, 孙庆, 韩进宝. 圆柱孔收缩的线弹性-完全塑性解及其应用[J]. 岩土力学, 2012, 33(5): 162-168.
    [16]
    张亚国, 肖书熊, 翟张辉, 等. 考虑黏土结构性影响的柱孔卸荷收缩问题解析及数值验证[J]. 中国公路学报, 2023, 36(5): 88-98.
    [17]
    张家奇, 赵春风, 赵程, 等. 考虑弹塑性卸荷的柱孔和球孔反向扩张解[J]. 岩土力学, 2023, 44(11): 3224-3234.
    [18]
    赵春风, 贾尚华, 赵程. 基于统一强度准则的柱孔扩张问题及扩孔孔径分析[J]. 同济大学学报(自然科学版), 2015, 43(11):1634-1641.
    [19]
    ZHAO C F, FEI Y, ZHAO C, et al. Analysis of expanded radius and internal expanding pressure for undrained cylindrical cavity expansion[J/OL]. International Journal of Geomechanics, 2018, 18(2)[2023-09-20]. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001058.
    [20]
    龚辉, 赵春风. 基于统一强度理论桩孔稳定性分析[J].沈阳建筑大学学报(自然科学版), 2011, 27(2): 237-241.
    [21]
    赵春风, 王有宝, 吴悦, 等.考虑不同中主应力影响的钻孔卸荷缩孔效应分析[J]. 哈尔滨工业大学学报, 2020, 52(11): 63-70.
    [22]
    ZHAO C F, WANG Y B, ZHAO C, et al. Analysis of drained cavity unloading-contraction considering different degrees of intermediate principal stress with unified strength theory[J/OL]. International Journal of Geomechanics, 2020, 20(7)[2023-09-20]. https://doi.org/10.1061/(ASCE)GM.1943-5622.000170.
    [23]
    俞茂宏. 岩土类材料的统一强度理论及其应用[ J]. 岩土工程学报, 1994, 16(2): 1-9.
    [24]
    汪鹏程, 朱向荣. 考虑中间主应力影响的土中孔扩张问题精确相似解[J]. 水利学报, 2004, 35(11): 68-73.
    [25]
    孔位学, 芮勇勤, 董宝弟. 岩土材料在非关联流动法则下剪胀角选取探讨[J]. 岩土力学, 2009, 30(11): 3278-3282.
    [26]
    ZHAO C F, WU Y, ZHAO C, et al. Pile side resistance in sands for the unloading effect and modulus degradation[J/OL]. Materiales de Construcción, 2019, 69[2023-09-20].https://doi.org/10.3989/mc.2019.03718.
    [27]
    YU M H. Unified strength theory and its applications[M]. Singapore:Springer-Verlag, 2004.
  • Relative Articles

    [1]ZHANG Ailin, YANG Shuo, JIANG Ziqin, ZHANG Wenying, LIU Jie, YANG Xiaofeng. Seismic Fragility Analysis of Steel Frame Structure with Lateral Resistance Energy-Consuming Device[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(5): 101-108. doi: 10.13204/j.gyjzG21122104
    [2]WANG Yaoshu, TANG Yong, ZHONG Meiling, SUN Yan, FU Yingying. Spatial Narrative of Memorial Landscapes from the Donghekou Site Park of Earthquake in Qingchuan[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 62-66,21. doi: 10.13204/j.gyjzG21020501
    [3]ZHAO Zihan, XIAO Kai, XIAO Yiqing, LI Chao, ZHANG Wentong. Fragility Analysis of Transmission Towers with a Strong Wind Based on First-Passage Failure Criterion[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(4): 15-21. doi: 10.13204/j.gyjzG20121012
    [4]MEN Jinjie, ZHONG Xin, XUE Chen, LAN Tao, LI Ran, ZHANG Liang. Comfortable Level Analysis on Floors of Prefabricated Box-Plate Steel Structures with TMD and Their Vibration Control Study[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(1): 50-56. doi: 10.13204/j.gyjzG22041411
    [5]MAO Dong-xu, LIU Zu-qiang, XUE Jian-yang, ZHANG Feng-liang, CHEN Li-ying. Research on Simplified Method of Seismic Response Analysis Method for Steel Reinforced Concrete Spatial Frames with Special-Shaped Columns[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(9): 161-169. doi: 10.13204/j.gyjzg20112911
    [11]Shu Xingping Liao Rongting Lu Beirong, . TEST AND ANALYSIS FOR COMFORT DEGREE FLOOR VIBRATION INDUCED HUMAN OF XIAO TIANCHENG BUILDING[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(10): 36-41. doi: 10.13204/j.gyjz201510007
    [13]Sun Guojun, Chen Zhihua, Liu Zhansheng. CABLE SUPPORTED PLANE STRUCTURE AND ITS ELASTOPLASTIC ANALYSIS UNDER BEYOND SNOW LOAD[J]. INDUSTRIAL CONSTRUCTION, 2010, 40(8): 20-26. doi: 10.13204/j.gyjz201008006
    [14]Bai Xiao-hong, Bai Guo-liang, Wu Tao. 3-D SEISMIC RESPONSE ANALYSIS OF R.C.FRAME-BENT STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(11): 34-37. doi: 10.13204/j.gyjz200711010
    [15]Liu Jinrong, Deng Yongsheng, Jiang Chun, Yang Jianjiang. STUDY ON SEISMIC DESIGN CRITERION OF EXISTING STRUCTURE IN RE-SERVICE PERIOD[J]. INDUSTRIAL CONSTRUCTION, 2007, 37(5): 23-25. doi: 10.13204/j.gyjz200705006
    [16]Shui Weihou, Zhu Jianfeng. EXPERIMENTAL ANALYSIS OF THE INFLUENCE OF VIBRATION DURING 10 000kN·m HIGH ENERGY LEVEL DYNAMIC COMPACTION[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(1): 37-39. doi: 10.13204/j.gyjz200601012
    [17]Zhu Yanzhi, Wang Junlin. NUMERICAL SIMULATION OF ELASTOPLASTIC SEISMIC RESPONSE FOR COMPOSITE FOUNDATION TAKING ACCOUNT OF ANISOTROPY[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(6): 45-48,10. doi: 10.13204/j.gyjz200506013
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04050100150200
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.2 %FULLTEXT: 9.2 %META: 87.0 %META: 87.0 %PDF: 3.8 %PDF: 3.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.6 %其他: 6.6 %其他: 0.2 %其他: 0.2 %China: 0.4 %China: 0.4 %上海: 3.2 %上海: 3.2 %东营: 0.2 %东营: 0.2 %临汾: 0.2 %临汾: 0.2 %佛山: 0.6 %佛山: 0.6 %兰州: 0.6 %兰州: 0.6 %北京: 12.0 %北京: 12.0 %十堰: 0.2 %十堰: 0.2 %南京: 4.6 %南京: 4.6 %南宁: 0.8 %南宁: 0.8 %南昌: 1.2 %南昌: 1.2 %厦门: 0.8 %厦门: 0.8 %合肥: 1.2 %合肥: 1.2 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸阳: 0.2 %咸阳: 0.2 %哈尔滨: 0.4 %哈尔滨: 0.4 %商丘: 0.4 %商丘: 0.4 %大连: 1.4 %大连: 1.4 %天津: 3.2 %天津: 3.2 %太原: 1.6 %太原: 1.6 %安康: 0.4 %安康: 0.4 %宜昌: 0.2 %宜昌: 0.2 %宜春: 0.4 %宜春: 0.4 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %常州: 0.2 %常州: 0.2 %常德: 0.8 %常德: 0.8 %平顶山: 0.2 %平顶山: 0.2 %广州: 0.6 %广州: 0.6 %延安: 0.2 %延安: 0.2 %徐州: 0.2 %徐州: 0.2 %成都: 1.6 %成都: 1.6 %扬州: 0.8 %扬州: 0.8 %无锡: 2.6 %无锡: 2.6 %昆明: 1.2 %昆明: 1.2 %杭州: 0.8 %杭州: 0.8 %柳州: 0.2 %柳州: 0.2 %武汉: 3.0 %武汉: 3.0 %沈阳: 0.6 %沈阳: 0.6 %济南: 1.0 %济南: 1.0 %淮南: 0.2 %淮南: 0.2 %深圳: 0.6 %深圳: 0.6 %漯河: 0.8 %漯河: 0.8 %烟台: 0.2 %烟台: 0.2 %石家庄: 1.4 %石家庄: 1.4 %福州: 0.6 %福州: 0.6 %芒廷维尤: 14.0 %芒廷维尤: 14.0 %芝加哥: 1.8 %芝加哥: 1.8 %苏州: 0.8 %苏州: 0.8 %菏泽: 0.2 %菏泽: 0.2 %衡阳: 0.2 %衡阳: 0.2 %西宁: 14.4 %西宁: 14.4 %西安: 2.0 %西安: 2.0 %贵阳: 0.2 %贵阳: 0.2 %达州: 0.4 %达州: 0.4 %运城: 1.2 %运城: 1.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.0 %郑州: 1.0 %重庆: 2.0 %重庆: 2.0 %长沙: 1.2 %长沙: 1.2 %陇南: 0.2 %陇南: 0.2 %青岛: 0.6 %青岛: 0.6 %马鞍山: 0.2 %马鞍山: 0.2 %其他其他China上海东营临汾佛山兰州北京十堰南京南宁南昌厦门合肥呼和浩特咸阳哈尔滨商丘大连天津太原安康宜昌宜春巴音郭楞常州常德平顶山广州延安徐州成都扬州无锡昆明杭州柳州武汉沈阳济南淮南深圳漯河烟台石家庄福州芒廷维尤芝加哥苏州菏泽衡阳西宁西安贵阳达州运城邯郸郑州重庆长沙陇南青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (51) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return