Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Volume 55 Issue 8
Aug.  2025
Turn off MathJax
Article Contents
WANG Jiachang, ZHENG Baofeng, HE Jie, YANG Jiang. Research on Micromechanical Ductile Fracture Properties of Austenitic Stainless Steel S30408 Base Metal and Welds[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(8): 217-225. doi: 10.3724/j.gyjzG23091910
Citation: WANG Jiachang, ZHENG Baofeng, HE Jie, YANG Jiang. Research on Micromechanical Ductile Fracture Properties of Austenitic Stainless Steel S30408 Base Metal and Welds[J]. INDUSTRIAL CONSTRUCTION, 2025, 55(8): 217-225. doi: 10.3724/j.gyjzG23091910

Research on Micromechanical Ductile Fracture Properties of Austenitic Stainless Steel S30408 Base Metal and Welds

doi: 10.3724/j.gyjzG23091910
  • Received Date: 2023-09-19
    Available Online: 2025-10-24
  • In order to calibrate the micromechanism-based fracture model parameters for five austenitic stainless steel S30408 materials—base metal, longitudinal welds, transverse welds, longitudinal heataffected zone (HAZ), and transverse HAZ—standard smooth round bar tensile tests and notched round bar tensile tests were conducted, along with scanning electron microscopy (SEM) examination of the fracture surfaces. These tests provided the constitutive parameters and characteristic lengths for each material. The entire loading process of the notched round bar specimen was simulated using the finite element method (FEM), and the micromechanical fracture toughness parameters for each material were calibrated based on the Void Growth Model (VGM) and the Stress-Modified Critical Strain (SMCS) model. The results showed that the values of the toughness parameters α and η for S30408 welds were smaller than those of the base metal and the HAZ material, indicating that the weld material was more prone to cracking. The calibrated fracture toughness parameters all exhibited coefficients of variation less than 12%, which validated the effectiveness of the micromechanism-based fracture model in predicting ductile fracture of austenitic stainless steel S30408 base metal, welds, and HAZ materials. Compared to conventional carbon steel, the base metal of austenitic stainless steel S30408 exhibited significantly superior fracture toughness, while its welds demonstrated the poorest performance.
  • loading
  • [1]
    李国强, 孙飞飞, 沈祖炎. 强震下钢框架梁柱焊接连接的断裂行为[J]. 建筑结构学报, 1998, 19(4): 19-28.
    [2]
    沈祖炎, 沈苏. 高层钢结构考虑损伤累积及裂纹效应的抗震分析[J]. 同济大学学报(自然科学版), 2002, 30(4): 393-398.
    [3]
    ZHENG B F, WU B C, ZHANG M Y, et al. Pseudo-static test on stainless steel frame with high-strength bolted extended endplate joint[J]. Journal of Constructional Steel Research, 2023, 207, 107980.
    [4]
    袁焕鑫, 刘向华, 杨璐, 等. 循环荷载作用下不锈钢T形件螺栓连接滞回性能试验研究[J]. 建筑结构学报, 2022, 43(7): 175-183.
    [5]
    LIU M M, SHI G. Cyclic loading tests of duplex stainless steel beam-to-column joints with WUF-W connections[C]//Ninth International Conference on Advances in Steel Structures(ICASS). Hong Kong: The Hong Kong Institute of Steel Construction, 2018: 947-956.
    [6]
    KUWAMURA H. Fracture of steel during an earthquake-state-of-the-art in Japan[J]. Engineering Structures, 1998, 20(4/5/6): 310-322.
    [7]
    MCCLINTOCK F A. A criterion for ductile fracture by the growth of holes[J]. Journal of Applied Mechanics, 1968, 35(2): 363-371.
    [8]
    RICE J R, TRACEY D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3): 201-217.
    [9]
    HANCOCK J W, MACKENZIE A C. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states[J]. Journal of the Mechanics and Physics of Solids, 1976, 24(2/3): 147-160.
    [10]
    KANVINDE A M, DEIERLEIN G G. Void growth model and stress modified critical strain model to predict ductile fracture in structural steels[J]. Journal of Structural Engineering, 2006, 132(12): 1907-1918.
    [11]
    WANG Y Q, ZHOU H, SHI Y J, et al. Fracture prediction of welded steel connections using traditional fracture mechanics and calibrated micromechanics based models[J]. International Journal of Steel Structures, 2011, 11(3): 351-366.
    [12]
    LIAO F F, WANG W, CHEN Y Y. Parameter calibrations and application of micro-mechanical fracture models of structural steels[J]. Structural Engineering and Mechanics, 2012, 42(2): 153-174.
    [13]
    廖芳芳, 王睿智, 李文超, 等. Q460钢基于微观机制的延性断裂判据研究[J]. 西安建筑科技大学学报(自然科学版), 2016, 48(4): 535-543.
    [14]
    王睿智. 单调荷载和超低周荷载作用下钢材的微观断裂模型及其参数校准[D]. 西安: 长安大学, 2017.
    [15]
    刘希月, 王元清, 石永久. 基于微观机理的高强度钢材及其焊缝断裂预测模型研究[J]. 建筑结构学报, 2016, 37(6): 228-235.
    [16]
    常笑, 杨璐, 朱振兴, 等. 不锈钢材料基于微观机理的断裂模型研究[C]//中国钢结构协会结构稳定与疲劳分会第16届(ISSF-2018)学术交流会暨教学研讨会论文集. 青岛: 2018: 280-288.
    [17]
    YIN F, YANG L, WANG M, et al. Study on ultra-low cycle fatigue behavior of austenitic stainless steel[J]. Thin-Walled Structures, 2019, 143, 106205.
    [18]
    CHANG X, YANG L, ZONG L, et al. Study on cyclic constitutive model and ultra low cycle fracture prediction model of duplex stainless steel[J]. Journal of Constructional Steel Research, 2019, 152: 105-116.
    [19]
    ZHANG M Y, ZHENG B F, WANG J C, et al. Study on fracture properties of duplex stainless steel and its weld based on micromechanical models[J]. Journal of Constructional Steel Research, 2022, 190, 107115.
    [20]
    KANVINDE A M, DEIERLEIN G G. Micromechanical simulation of earthquake-induced fracture in steel structures: Report No. 145[R]. Stanford: Blume Earthquake Engineering Center, Stanford University, CA, 2004.
    [21]
    中国国家标准化管理委员会. 不锈钢热轧钢板和钢带: GB/T 4237-2015[S]. 北京: 中国标准出版社, 2015.
    [22]
    中国国家标准化管理委员会. 金属材料拉伸试验第1部分: 室温试验方法: GB/T 228. 1-2021[S]. 北京: 中国标准出版社, 2021.
    [23]
    杨璐, 卫璇, 张有振, 等. 不锈钢母材及其焊缝金属材料单拉本构关系研究[J]. 工程力学, 2018, 35(5): 125-130

    , 151.
    [24]
    GARDNER L, NETHERCOT D A. Experiments on stainless steel hollow sections-part 1: material and cross-sectional behavior[J]. Journal of Constructional Steel Research, 2004, 60(9): 1291-1318.
    [25]
    British Standard. Eurocode 3: design of steel structures-part 1-4: general rules-Supplementary rules for stainless steels: EN1993-1-4∶2006+A1∶2015[S]. London: British Standard, 2015.
    [26]
    CHABOCHE J L. Time-independent constitutive theories for cyclic plasticity[J]. International Journal of Plasticity, 1986, 2(2): 149-188.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (33) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return