Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Architectural Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LEI Yawei, ZHANG Jingtao, TIAN Hualiang, SHI Jiancheng, ZHENG Gang, LI Qinghan, CHENG Xuesong. Analysis on Dewatering Tests at Deep Excavation Sites of Soft Soil Areas in Aquifer-Connected Conditions[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(10): 191-198. doi: 10.3724/j.gyjzG22100604
Citation: LAI Haopeng, QIU Hao, LIAO Feiyu, QIU Huasheng, LIAN Fayan. Research on Crack Propagation Behavior of UHPC-NC Interface Under Stress Wave[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 95-102. doi: 10.3724/j.gyjzG23083029

Research on Crack Propagation Behavior of UHPC-NC Interface Under Stress Wave

doi: 10.3724/j.gyjzG23083029
  • Received Date: 2023-08-30
    Available Online: 2024-12-05
  • For the ultra-high performance concrete (UHPC) overlaying normal concrete (NC) structures, the reliable interface performance between UHPC and NC is the foundation for achieving their good co-work behavior. The paper focused on the experimental and theoretical research on the crack propagation at the interface of these UHPC-NC configurations under stress waves. A bi-material notched semi-circle bent (BNSCB) configuration was proposed, and the impact tests were conducted on the BNSCB specimens using a split Hopkinson pressure bar system (SHPB), examining the differences in the interfacial impact performance between UHPC with different strengths and NC. Based on the finite element method and crack propagation gauge, the complex stress intensity factor (CSIF) at the crack tip of the interface of BNSCB specimen was calculated. The results showed that: 1) under stress wave action, interface cracks in the BNSCB specimens tended to propagate along the aggregate-cement matrix interface; 2) the maximum velocity of interface crack propagation in the BNSCB specimen did not exceed the Rayleigh wave velocity of UHPC; 3) the parameter K2 at the crack tip of the BNSCB specimen was much smaller than K1, and the parameter K1 played a dominant role in crack initiation; 4) there was no obvious relations between the parameter K2 in CSIF and UHPC strength grades.
  • [1]
    BRVHWILER E, DENARIE E. Rehabilitation and strengthening of concrete structures using ultra-high performance fibre reinforced concrete[J]. Structural Engineering International, 2013, 23: 450-457.
    [2]
    PREM P R, MURTHY A R, RAMESH G, et al. Flexural behaviour of damaged RC beams strengthened with ultra high performance concrete[J]. Indian Concrete Journal, 2015, 89(1): 60-68.
    [3]
    SAFDAR M, MATSUMOTO T, KAKUMA K. Flexural behavior of reinforced concrete beams repaired with ultra-high performance fiber reinforced concrete (UHPFRC)[J]. Composite Structures, 2016, 157: 448-460.
    [4]
    PASCHALIS S A, LAMPROPOULOS A P, OURANIA T. Experimental and numerical study of the performance of ultra high performance fiber reinforced concrete for the flexural strengthening of full scale reinforced concrete members[J]. Construction and Building Materials, 2018, 186: 351-366.
    [5]
    许建明, 陈勇, 刘骁繁, 等. UHPC-NC叠层梁界面黏结性能的试验研究与数值模拟[J]. 建筑科学与工程学报, 2021, 38(4):44-56.
    [6]
    贾方方, 贺奎, 王万金, 等. 活性粉末混凝土与普通混凝土黏结劈拉性能[J]. 铁道学报, 2016, 38(3):127-132.
    [7]
    HUSSEIN L, AMLEH L. Structural behavior of ultra-high performance fiber reinforced concrete-normal strength concrete or high strength concrete composite members[J]. Construction and Building Materials, 2015, 93: 1105-1116.
    [8]
    李涛, 王爽倩, 郑七振, 等. UHPC-NC结合面粘结性能的研究进展[J]. 新型建筑材料, 2022, 49(11):36-41.
    [9]
    张阳, 吴洁, 邵旭东, 等. 超高性能混凝土-普通混凝土界面抗剪性能试验研究[J]. 土木工程学报, 2021, 54(7):81-89.
    [10]
    杨俊, 周建庭, 张中亚, 等. UHPC-NC键槽界面抗剪性能研究[J]. 中国公路学报, 2021, 34(8):132-144.
    [11]
    严鹏, 张晨, 高启栋, 等. 不同损伤程度下岩石力学参数变化的声波测试[J]. 岩土力学, 2015, 36(12):3425-3432.
    [12]
    ERINGEN A C, SUHUBI E S, CHAO C C. Elastodynamics vol II linear theory[J].Journal of Applied Mechanics, 1978, 45(1):229.
    [13]
    范天佑. 断裂动力学原理与应用[M]. 北京:北京理工大学出版社, 2006.
    [14]
    FELT E J. Resurfacing and patching concrete pavements with bonded concrete[J]. Highway Research Board Proceedings, 1956, 35: 444-469.
    [15]
    田稳苓, 赵志方, 赵国藩, 等. 新老混凝土的粘结机理和测试方法研究综述[J]. 河北理工学院学报, 1998(1):84-94.
    [16]
    HAO Q, BINGLUN C, FEI W, et al. Investigating dynamic fracture in marble-mortar interface under impact loading[J]. Construction and Building Materials, 2022, 336, 127548.
    [17]
    HAO Q, FEI W, ZHEMING Z, et al. Study on dynamic fracture behaviour and fracture toughness in rock-mortar interface under impact load[J]. Composite Structures, 2021, 271, 114174.
    [18]
    许金泉. 界面力学[M]. 北京:科学出版社, 2006.
    [19]
    贾普荣, 张元冲. 双材料界面裂纹应力强度因子计算[J]. 机械科学与技术, 2001, 20(9):15-17

    , 34.
  • Relative Articles

    [1]HU Jianlin, XUE Jinhao, GUO Jiangfeng, MENG Zhipeng, LIU Yang, ZHENG Ruihai. Experimental Study on Influential Factors for Shear Properties of Interfaces Between Anchor Bolts and Soil Under Different Confining Pressures[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(3): 200-205. doi: 10.3724/j.gyjzG22090804
    [2]LAI Haopeng, QIU Hao, LIAO Feiyu, XU Chao, ZHENG Ruisheng, LIU Jianjun, QIU Yujin. Research on Dynamic Crack Propagation Behavior of Steel-HSC Interface Under Impact Loads[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(11): 103-111. doi: 10.3724/j.gyjzG24042910
    [3]HANG Zhenyuan, YU Ying. Experimental Research on Fracture Properties of Mixed Mode Ⅰ-Ⅱ Concrete-Epoxy Mortar Interface[J]. INDUSTRIAL CONSTRUCTION, 2023, 53(2): 29-36. doi: 10.13204/j.gyjzG22113007
    [4]YANG Peishi. Experimental Research on Mechanical Properties of New-to-old Concrete Interface Under Direct Shear Condition[J]. INDUSTRIAL CONSTRUCTION, 2022, 52(1): 200-204,121. doi: 10.13204/j.gyjzG21060913
    [5]LUO Peiyun, LEI Yongwang, ZHU Binrong, ZHAO Weiping. EXPERIMENTAL RESEARCH ON INTERFACE BOND PERFORMANCES BETWEEN LSAW STEEL PIPES AND CONCRETE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(3): 77-84. doi: 10.13204/j.gyjzG20052008
    [6]LI Wentao, JIA Junfeng, WANG Yuguo, LI Bin, WAN Siyi. EXPERIMENTAL RESEARCH ON MECHANICAL PROPERTIES OF NEW AND OLD CONCRETE JOINTS OF PREFABRICATED STRUCTURE[J]. INDUSTRIAL CONSTRUCTION, 2021, 51(2): 40-46. doi: 10.13204/j.gyjzG20032702
    [7]CHEN Ronggang, MA Jing, CUI Zhuangzhuang, YUAN Guanglin. EXPERIMENTAL INVESTIGATION INTO THE INFLUENCE OF WATER CONTENT ON THE SHEAR CHARACTERISTICS OF PILE SOIL-INTERFACE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(11): 102-105,31. doi: 10.13204/j.gyjzG20082406
    [8]MOU Yanling, JIA Bin, CHEN Baifan, HUANG Hui, LU Yonggang. EXPERIMENTAL STUDY OF SHEAR PERFORMANCE OF CFRP REINFORCED CONCRETE INTERFACE[J]. INDUSTRIAL CONSTRUCTION, 2020, 50(12): 160-165. doi: 10.13204/j.gyjzG19122806
    [15]Guo Lixiang Tong Genshu, . SHEAR STRENGTH ON THE INTERFACE BETWEEN RECTANGULAR TUBES AND INFILLED CONCRETE AND ITS IMPROVEMENT BY DIAPHRAGM[J]. INDUSTRIAL CONSTRUCTION, 2015, 45(6): 154-159. doi: 10.13204/j.gyjz201506030
    [16]Chang Hong, Xia Junwu, Kong Wei, Zheng Peibo, Tang Xiaoxiang. DEVELOPMENT AND APPLICATION OF EXPERIMENT SYSTEM FOR SOIL-HYDRAULIC STRUCTURE INTERFACE[J]. INDUSTRIAL CONSTRUCTION, 2013, 43(6): 71-75. doi: 10.13204/j.gyjz201306016
    [17]Zheng Yun, Yue Qingrui, Hui Yunling, Ye Lieping. FRACTURE ANALYSIS OF THE INTERFACE BETWEEN STEEL AND FRP PLATE FOR THE STEEL BEAMS REINFORCED WITH FRP PLATE[J]. INDUSTRIAL CONSTRUCTION, 2008, 38(11): 106-108. doi: 10.13204/j.gyjz200811026
    [18]Liu Yong-jian, Chi Jian-jun. PUSH-OUT TEST ON SHEAR BOND STRENGTH OF CFST[J]. INDUSTRIAL CONSTRUCTION, 2006, 36(4): 78-80. doi: 10.13204/j.gyjz200604024
    [19]Shi Minglei, Zhang Bo. STUDY ON INTERACTION CHARACTERISTICS BETWEEN CLAY AND REINFORCEMENT[J]. INDUSTRIAL CONSTRUCTION, 2005, 35(4): 50-54. doi: 10.13204/j.gyjz200504015
  • Cited by

    Periodical cited type(1)

    1. 刘鹏. 电力沟槽和接线盒施工工艺优化对承载式光伏路面的影响研究. 工程建设与设计. 2025(04): 145-147 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.9 %FULLTEXT: 30.9 %META: 67.0 %META: 67.0 %PDF: 2.1 %PDF: 2.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 46.8 %其他: 46.8 %北京: 6.4 %北京: 6.4 %十堰: 1.1 %十堰: 1.1 %天津: 1.1 %天津: 1.1 %张家口: 9.6 %张家口: 9.6 %成都: 1.1 %成都: 1.1 %扬州: 1.1 %扬州: 1.1 %新乡: 1.1 %新乡: 1.1 %武汉: 3.2 %武汉: 3.2 %温州: 2.1 %温州: 2.1 %漯河: 4.3 %漯河: 4.3 %芒廷维尤: 9.6 %芒廷维尤: 9.6 %衡阳: 1.1 %衡阳: 1.1 %西宁: 2.1 %西宁: 2.1 %西安: 2.1 %西安: 2.1 %贵阳: 1.1 %贵阳: 1.1 %运城: 1.1 %运城: 1.1 %邯郸: 1.1 %邯郸: 1.1 %鄂尔多斯: 1.1 %鄂尔多斯: 1.1 %镇江: 2.1 %镇江: 2.1 %长沙: 1.1 %长沙: 1.1 %其他北京十堰天津张家口成都扬州新乡武汉温州漯河芒廷维尤衡阳西宁西安贵阳运城邯郸鄂尔多斯镇江长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (62) PDF downloads(2) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return