Citation: | DU Ting, QU Pengyu, JI Xiankun, LI Zhiying, WANG Benwu, CHEN Sen. Predictions for Carbonation Depth of Marine Concrete Under Different Temperature and Humidity Environments Based on Levenberg-Marquart Algorithm[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(7): 217-222. doi: 10.3724/j.gyjzG23083020 |
[1] |
QU F, LI W, DONG W, et al. Durability deterioration of concrete under marine environment from material to structure: A critical review[J]. Journal of Building Engineering, 2021, 35, 102074.
|
[2] |
李姗姗. 水泥石碳化性能的影响因素及其机理研究[D]. 重庆:重庆大学, 2014.
|
[3] |
ZHANG M, DU LIN, LI Z, et al. Durability of marine concrete doped with nanoparticles under joint action of Cl-erosion and carbonation[J]. Case Studies in Construction Materials, 2023, 18, e01982.
|
[4] |
张铖, 王玲, 姚燕, 等. 逐层磨粉pH值法测定混凝土碳化深度的试验研究[J]. 材料导报, 2022, 36(7):174-177.
|
[5] |
钱文勋, 陈迅捷, 蔡跃波, 等. 应力和氯盐环境下海工混凝土的碳化性能[J]. 混凝土与水泥制品, 2018(5):1-5.
|
[6] |
DHEILLY R M, TUDO J, SEBAIBI Y, et al. Influence of storage conditions on the carbonation of powdered Ca(OH)2[J]. Construction and Building Materials, 2002, 16(3):155-161.
|
[7] |
张旭辉, 刘博文, 杨玲, 等. 不同温度和强度影响下混凝土碳化性能试验研究[J]. 建筑结构, 2020, 50(24):110-115.
|
[8] |
ELSALAMAWY M, MOHAMED A R, KAMAL E M. The role of relative humidity and cement type on carbonation resistance of concrete[J]. Alexandria Engineering Journal, 2019, 58(4):1257-1264.
|
[9] |
蒋清野, 王洪深, 路新瀛. 混凝土碳化数据库与混凝土碳化分析[R].北京:清华大学, 1997.
|
[10] |
LIU P, YU Z, CHEN Y. Carbonation depth model and carbonated acceleration rate of concrete under different environment[J]. Cement and Concrete Composites, 2020, 114, 103736.
|
[11] |
阿列克谢耶夫. 钢筋混凝土结构中钢筋腐蚀与保护[M]. 吴新祖, 黄可信, 译. 北京: 中国建筑工业出版社, 1983.
|
[12] |
PAPADAKIS V G, VAYENAS C G, FARDIS M N. Fundamental modeling and experimental investigation of concrete carbonation[J]. ACI Materials Journal, 1991, 88(4):363-373.
|
[13] |
朱安民. 混凝土碳化与钢筋混凝土耐久性[J]. 混凝土, 1992(6):18-22.
|
[14] |
牛荻涛, 张宾强, 刘俊, 等. 自然暴露环境下混凝土部分碳化区长度预测模型[J]. 工业建筑, 2022, 52(4):146-151.
|
[15] |
徐飞, 张凯, 陈正, 等. 高性能混凝土碳化试验及人工神经网络碳化深度预测模型[J]. 混凝土, 2022(5):57-60.
|
[16] |
张誉, 蒋利学. 基于碳化机理的混凝土碳化深度实用数学模型[J]. 工业建筑, 1998(1):16-19.
|
[17] |
王传坤. 混凝土氯离子侵蚀和碳化试验标准化研究[D]. 杭州:浙江大学, 2010.
|
[18] |
XU Z, ZHANG Z, HUANG J, et al. Effects of temperature, humidity and CO2 concentration on carbonation of cement-based materials: A review[J]. Construction and Building Materials, 2022, 346, 128399.
|
[19] |
YOON I, COPUROGLU O, PARK K. Effect of global climatic change on carbonation progress of concrete[J]. Atmospheric Environment, 2007, 41(34):7274-7285.
|
[20] |
LOURAKIS, MANOLIS I A. A brief description of the levenberg-marquardt algorithm implemened by levmar[J]. Foundation of Research and Technology, 2005, 4(1):1-6.
|
[21] |
张海燕. 混凝土碳化深度的试验研究及其数学模型建立[D]. 杨凌:西北农林科技大学, 2006.
|
[22] |
李果, 袁迎曙, 耿欧. 气候条件对混凝土碳化速度的影响[J]. 混凝土, 2004(11):49-51.
|