Citation: | WU Yongjingbang, JIN Nan, SHI Zhongqi, YUE Qingrui, ZHONG Rumian. Research Progress on Dynamic Characteristic Monitoring Methods of Super High-Rise Buildings[J]. INDUSTRIAL CONSTRUCTION, 2024, 54(1): 1-10. doi: 10.3724/j.gyjzG23071809 |
[1] |
Council on Tall Buildings and Urban Habitat. Database of countries by number of 150m+ building[EB/OL]. (2023-03-27) [2023-11-22]. https://www.skyscrapercenter.com/countrie.
|
[2] |
GARCíA-MACíAS E, UBERTINI F. Automated operational modal analysis and ambient noise deconvolution interferometry for the full structural identification of historic towers: A case study of the Sciri Tower in Perugia, Italy [J/OL]. Engineering Structures, 2020, 215[2023-11-22]. https://doi.org/10.1016/j.engstruct.2020. 110615.
|
[3] |
伊廷华, 周广东, 曲春绪, 等. 结构运营模态测-辨相和理论[J]. 土木工程学报, 2020, 53(10): 72-81.
|
[4] |
王凌波, 王秋玲, 朱钊, 等. 桥梁健康监测技术研究现状及展望[J]. 中国公路学报, 2021, 34(12): 25-45.
|
[5] |
B F SPENCER, V HOSKERE, and Y NARAZAKI, Advances in computer vision-based civil infrastructure inspection and monitoring [J], Engineering 5, 2199222(2019).
|
[6] |
徐阳, 金晓威, 李惠. 土木工程智能科学与技术研究现状及展望[J]. 建筑结构学报, 2022, 43(9): 23-35.
|
[7] |
S ZHONG, J ZHONG, and Q ZHANG, et al.Quasi-optical coherence vibration tomography technique for damage detection in beam-like structures based on auxiliary mass induced frequency shift [J], Mechanical Systems and Signal Processing 93, 241254(2017).
|
[8] |
QIAO L. Structural damage detection using signal-based pattern recognition [D]. Manhattan: Kansas State University, 2009.
|
[9] |
S NANDAGOPALAN, Engineering applications of correlation and spectral analysis [J], Technometrics 36, 2220221(1994).
|
[10] |
C Y SHIH, Y G TSUEI, and R J ALLEMANG, et al.Complex mode indication function and its applications to spatial domain parameter estimation [J], Mechanical Systems and Signal Processing 2, 4367377(1988).
|
[11] |
GUILLAUME P, VERBOVEN P, VANLANDUIT S. Frequency- domain maximum likelihood identification of modal parameters with confidence intervals [J]. Noise and Vibration Engineering, 1998, 1: 359-366.
|
[12] |
BRINCKER R, ZHANG L, ANDERSEN P. Modal identification from ambient responses using frequency domain decomposition [C]//Proceedings of the 18th International Modal Analysis Conference, 2000: 625-630.
|
[13] |
F PIOLDI, R FERRARI, and E RIZZI, Output-only modal dynamic identification of frames by a refined FDD algorithm at seismic input and high damping [J], Mechanical Systems and Signal Processing 68-69, 265291(2016).
|
[14] |
PIOLDI F, FERRARI R, RIZZI E. Seismic FDD modal identification and monitoring of building properties from real strong-motion structural response signals [J/OL]. Structural Control and Health Monitoring, 2017, 24[2023-11-27]. https://doi.org/10.1002/stc.1982.
|
[15] |
YUN D Y, KIM D, KIM M, et al. Field measurements for identification of modal parameters for high-rise buildings under construction or in use [J/OL]. Automation in Construction, 2021, 121[2023-11-23]. https://doi.org/10.1016/j.autcon.2010.103446.
|
[16] |
HASAN M D B A, AHMAD Z A B, LEONG M S, et al. Enhanced frequency domain decomposition algorithm: a review of a recent development for unbiased damping ratio estimates [J]. Journal of Vibroengineering, 2018, 20: 51919-51936.
|
[17] |
周思达, 曹博远, 周小陈. 结构应变模态参数辨识的最小二乘复频域方法[J]. 噪声与振动控制, 2017, 37(6): 17-22.
|
[18] |
B PEETERS, H VAN DER AUWERAER, and P GUILLAUME, et al.The PolyMAX frequency-domain method: a new standard for modal parameter estimation? [J], Shock and Vibration 11, 3-4395409(2004).
|
[19] |
EL-KAFAFY M, GUILLAUME P, PEETERS B, et al. Advanced frequency-domain modal analysis for dealing with measurement noise and parameter uncertainty [C]//Proceedings of the 30th International Modal Analysis Conference. 2012: 179-199.
|
[20] |
章国稳, 汤宝平, 陈卓. 多参考最小二乘复频域法的数值问题分析及优化[J]. 振动工程学报, 2021, 34(4): 690-696.
|
[21] |
C W LIU, J Z WU, and Y G ZHANG, Review and prospect on modal parameter identification of spatial lattice structure based on ambient excitation [J], Applied Mechanics and Materials 94-96, 12711277(2011).
|
[22] |
MAGALHãES F, CAETANO E, CUNHA Á. Challenges in the application of stochastic modal identification methods to a cable-stayed bridge [J]. Journal of Bridge Engineering, 2007, 12: 6746-6754.
|
[23] |
JAMES Ⅲ G H, CARNE T G, LAUFFER J P. The natural excitation technique (NExT) for modal parameter extraction from operating wind turbines[R]. Technical Report: sand-92-1666 on DE 93010611. Albuquerque: Sandia National Labs, 1993.
|
[24] |
ANDERSEN P. Identification of civil engineering structures using vector ARMA models [D]. Aalborg: Aalborg University, 1997.
|
[25] |
DE MOOR B L R, VAN OVERSCHEE P, SUYKENS O J. Subspace algorithms for system identification and stochastic realization [C]//Proceedings of the International Symposium on Recent Advances in Mathematical Theory of Systems, Control, Networks and Signal Processing. 1991: 589-595.
|
[26] |
JUANG J N, PAPPA R S. An eigensystem realization algorithm for modal parameter identification and model reduction [J]. Journal of Guidance, Control, and Dynamics, 1985, 8(5): 620-627.
|
[27] |
S A HOSSEINI KORDKHEILI, S H MOMENI MASSOULEH, and S HAJIREZAYI, et al.Experimental identification of closely spaced modes using NExT- ERA [J], Journal of Sound and Vibration 412, 116129(2018).
|
[28] |
M CHANG, and S N PAKZAD, Modified natural excitation technique for stochastic modal identification [J], Journal of Structural Engineering 139, 1017531762(2013).
|
[29] |
QU C X, YI T H, LI H N. Mode identification by eigensystem realization algorithm through virtual frequency response function [J/OL]. Structural Control and Health Monitoring, 2019, 26(10)[2023-11-23]. https//doi.org/10.1002/stc.2429.
|
[30] |
CUNHA A, CAETANO E. Experimental modal analysis of civil engineering structures [J]. Sound and Vibration, 2006, 6(40): 12-20.
|
[31] |
VOLD H, KUNDRAT J, ROCKLIN G T, et al. A multi-input modal estimation algorithm for mini- computers [J]. SAE Transactions, 1982, 91: 815-821.
|
[32] |
S A HOSSEINI KORDKHEILI, S H MOMENI MASSOULEH, and S HAJIREZAYI, et al.Experimental identification of closely spaced modes using NExT- ERA [J], Journal of Sound and Vibration 412, 116129(2018).
|
[33] |
BODEUX J B, GOLINVAL J C. Application of ARMAV models to the identification and damage detection of mechanical and civil engineering structures [J]. Smart Materials and Structures, 2001, 10: 3479-489.
|
[34] |
M BERTHA, and J C GOLINVAL, Identification of non-stationary dynamical systems using multivariate ARMA models [J], Mechanical Systems and Signal Processing 88, 166179(2017).
|
[35] |
SPIRIDONAKOS M D, POULIMENOS A G, FASSOIS S D. Output-only identification and dynamic analysis of time-varying mechanical structures under random excitation: A comparative assessment of parametric methods [J]. Journal of Sound and Vibration, 2010, 329: 7768-7785.
|
[36] |
BRINCKER R, ANDERSEN P, JACOBSEN N J. Automated frequency domain decomposition for operational modal analysis [C]//Proceedings of IMAC-XXIV: A Conference & Exposition on Structural Dynamics Society for Experimental Mechanics, 2007: 1-7.
|
[37] |
CERAVOLO R, ABBIATI G. Time domain identification of structures: Comparative analysis of output-only methods [J]. Journal of Engineering Mechanics, 2013, 139: 4537-4544.
|
[38] |
ZHOU K, LI Q S. Modal identification of high-rise buildings under earthquake excitations via an improved subspace methodology [J/OL]. Journal of Building Engineering, 2022, 52[2023-11-23]. https://doi.org/10.1016/j.jobe.2022.104373.
|
[39] |
ZHOU K, LI Q S, HAN X L. Modal identification of civil structures via stochastic subspace algorithm with Monte Carlo-based stabilization diagram [J/OL]. Journal of Structural Engineering, 2022, 148(6)[2023-11-23].doi.org./10.1061/ (ASCE)ST.1943-541X.0003353.
|
[40] |
JIN N, YANG Y, DIMITRAKOPOULOS E G, et al. Application of short-time stochastic subspace identification to estimate bridge frequencies from a traversing vehicle [J/OL]. Engineering Structures, 2021, 230[2023-11-23]. doi.org/10.1016/j. engstruct.2020.111688.
|
[41] |
李雪艳, 官宇航, 罗铭涛, 等.基于Welch法的协方差随机子空间方法的模态参数识别[J]. 力学学报, 2022, 54(10): 2850-2860.
|
[42] |
LI H, YI T, GU M, et al. Evaluation of earthquake-induced structural damages by wavelet transform [J]. Progress in Natural Science, 2009, 19: 4461-470.
|
[43] |
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
|
[44] |
SHAN J, ZHANG H, SHI W, et al. Health monitoring and field-testing of high-rise buildings: A review [J]. Structural Concrete, 2020, 21: 41272-41285.
|
[45] |
PENG Z, PETER W T, CHU F. A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing [J]. Mechanical Systems and Signal Processing, 2005, 19: 5974-5988.
|
[46] |
柳絮, 王坚, 李文. 集成变分模态分解和希尔伯特-黄变换的结构振动时频提取模型[J]. 武汉大学学报(信息科学版), 2021, 46(11): 1686-1692.
|
[47] |
孙苗, 杨钧凯, 吴立. 改进希尔伯特-黄变换含噪振动信号时频分析[J/OL]. 上海交通大学学报(2023-03-21)[2023-11-24]. https://doi.org/10.16183/j.cnki.jsjtu.2022.255.
|
[48] |
M H RAFIEI, and H ADELI, A novel machine learning‐based algorithm to detect damage in high‐rise building structures [J/OL], The Structural Design of Tall and Special Buildings 26, 1810.10021400(2017).
|
[49] |
ZHOU K, XIE D L, XU K, et al. A machine learning-based stochastic subspace approach for operational modal analysis of civil structures [J/OL]. Journal of Building Engineering, 2023, 76[2023-11-23]. https://doi.org/10.1016/j.jobe.2023.107187.
|
[50] |
GEORGIOUDAKIS M, PLEVRIS V. Response spectrum analysis of multi-story shear buildings using machine learning techniques [J]. Computation, 2023, 11(7)[2023-11-23]. https://doi.org/10.3390/computation.11070126.
|
[51] |
KATAFYGIOTIS L S, YUEN K V. Bayesian spectral density approach for modal updating using ambient data [J]. Earthquake Engineering & Structural Dynamics, 2001, 30(8): 1103-1123.
|
[52] |
Y NI, X LU, and W LU, Operational modal analysis of a high-rise multi-function building with dampers by a Bayesian approach [J], Mechanical Systems and Signal Processing 86, 286307(2017).
|
[53] |
ZHANG F L, NI Y Q, NI Y C, et al. Operational modal analysis of Canton Tower by a fast frequency domain Bayesian method [J]. Smart Structures and Systems, 2016, 17: 2209-2230.
|
[54] |
B LI, and S K AU, An expectation-maximization algorithm for Bayesian operational modal analysis with multiple (possibly close) modes [J], Mechanical Systems and Signal Processing 132, 490511(2019).
|
[55] |
AU S K, ZHANG F L, NI Y C. Bayesian operational modal analysis: theory, computation, practice [J]. Computers & Structures, 2013, 126: 3-14.
|
[56] |
C A PEREZ-RAMIREZ, J P AMEZQUITA-SANCHEZ, and M VALTIERRA-RODRIGUEZ, et al.Recurrent neural network model with Bayesian training and mutual information for response prediction of large buildings [J], Engineering Structures 178, 603615(2019).
|
[57] |
熊红凯, 高星, 李劭辉, 等. 可解释化、结构化、多模态化的深度神经网络[J]. 模式识别与人工智能, 2018, 31(1): 1-11.
|
[58] |
C M CHANG, T K LIN, and C W CHANG, Applications of neural network models for structural health monitoring based on derived modal properties [J], Measurement 129, 457470(2018).
|
[59] |
OH B K, GLISIC B, KIM Y, et al. Convolutional neural network-based wind-induced response estimation model for tall buildings [J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34: 10843-10858.
|
[60] |
YUN D Y, SHIM H B, PARK H S. SSI-LSTM network for adaptive operational modal analysis of building structures [J/OL]. Mechanical Systems and Signal Processing, 2023, 195[2023-11-23]. https://doi.org/j.ymssp.2023.1103.06.
|
[61] |
M S HOSSAIN, Z C ONG, and Z ISMAIL, et al.Artificial neural networks for vibration based inverse parametric identifications: A review [J], Applied Soft Computing 52, 203219(2017).
|
[62] |
叶肖伟, 董传智. 基于计算机视觉的结构位移监测综述[J].中国公路学报, 2019, 32(11): 21-39.
|
[63] |
杨娜, 汪德佳, 李天昊,等. 基于计算机视觉方法的古建筑变形监测[J]. 建筑结构学报, 2023, 44(1): 192-202.
|
[64] |
修晟, 张愿, 单伽锃. 基于视觉和振动监测数据融合的结构动态位移识别及其试验验证[J]. 工程力学, 2023, 40(11): 90-98.
|
[65] |
GAO X, JI X, ZHANG Y, et al. Structural displacement estimation by a hybrid computer vision approach [J/OL]. Mechanical Systems and Signal Processing, 2023, 204[2023-11-24]. https://doi.org/10.1016/j.ymssp.2023.110754.
|
[66] |
胡卫华, 唐德徽, 李俊燕, 等. 基于分布式同步采集的赛格大厦结构动力学参数识别[J]. 建筑结构学报, 2022, 43(10): 76-84.
|
[67] |
吴睿, 廖聿宸, 宗周红, 等. 基于GNSS信号的随机子空间模态参数识别方法[J]. 东南大学学报(自然科学版), 2020, 50(6): 1045-1051.
|
[68] |
朱珊, 周文杰, 李晓莹. 混凝土健康监测技术综述[J]. 建筑结构, 2022, 52(增刊1): 2248-2252.
|
[69] |
SHEN N, CHEN L, LIU J, et al. A review of global navigation satellite system (GNSS)-based dynamic monitoring technologies for structural health monitoring [J/OL]. Remote Sensing, 2019, 11(9)[2023-11-24]. https://doi.org/10.3390/rs1109001. 1.
|
[70] |
YU J, MENG X, YAN B, et al. Global Navigation Satellite System-based positioning technology for structural health monitoring: a review [J/OL]. Structural Control and Health Monitoring, 2020, 27(1)[2023-11-24]. https://doi.org/10.1002/stc.2467.
|
[71] |
P MOYO, J M W BROWNJOHN, and R SURESH, et al.Development of fiber Bragg grating sensors for monitoring civil infrastructure [J], Engineering Structures 27, 1218281834(2005).
|
[72] |
张兴斌, 杨昕光, 潘蓉, 等. 土木工程智能化监测评估系统的理论研究及应用[J]. 工业建筑, 2021, 51(12): 102-106.
|
[73] |
焦柯, 赖鸿立, 彭子祥, 等. 基于物联网的既有建筑全生命周期安全运维服务系统关键技术研究[J]. 工业建筑, 2021, 51(10): 201-210.
|
[74] |
伊廷华, 李宏男, 顾明. 结构健康监测中基于多重优化策略的传感器布置方法[J]. 建筑结构学报, 2011, 32(12): 217-223.
|
[75] |
刘春, 艾克然木·艾克拜尔, 蔡天池. 面向建筑健康监测的无人机自主巡检与裂缝识别[J]. 同济大学学报(自然科学版), 2022, 50(7): 921-932.
|
[76] |
周梦飞, 王子洋, 杨家富. 应用于无人车的三维点云分类方法研究综述[J]. 传感技术学报, 2022, 35(7): 931-937.
|
[77] |
普东东, 欧阳永忠, 马晓宇. 无人船监测与测量技术进展[J].海洋测绘, 2021, 41(1): 8-12.
|
[78] |
LI Y, DIEUSSAERT E, BAETS R. Miniaturization of laser Doppler vibrometers: a review [J/OL]. Sensors, 2022, 22(13) [2023-11-24]. https://doi.org/10.3390/s22134735.
|
[79] |
涂淑琴, 薛月菊, 梁云等. RGB-D图像分类方法研究综述[J]. 激光与光电子学进展, 2016, 53(6): 35-48.
|
[80] |
ABDELBARR M, CHEN Y L, JAHANSHAHI M R, et al. 3D dynamic displacement-field measurement for structural health monitoring using inexpensive RGB-D based sensor [J/OL]. Smart Materials and Structures, 2017, 26(12)[2023-11-24]. https://doi.org/10.1088/1361-665x/aa9450.
|
[81] |
C Z DONG, O CELIK, and F N CATBAS, Marker-free monitoring of the grandstand structures and modal identification using computer vision methods [J], Structural Health Monitoring 18, 5-614911509(2019).
|
[82] |
D FENG, and M Q FENG, Experimental validation of cost-effective vision-based structural health monitoring [J], Mechanical Systems and Signal Processing 88, 199211(2017).
|
[83] |
LI Q, ZHI L H, TUAN A Y, et al. Dynamic behavior of Taipei 101 tower: Field measurement and numerical analysis [J]. Journal of Structural Engineering, 2011, 137: 1143-1155.
|
[84] |
ZHI L, LI Q, WU J, et al. Field monitoring of wind effects on a super-tall building during typhoons [J]. Wind & Structures, 2011, 14(3): 253-283.
|
[85] |
Y HE, X HAN, and Q LI, et al.Monitoring of wind effects on 600 m high Ping-An Finance Center during Typhoon Haima [J], Engineering Structures 167, 308326(2018).
|
[86] |
W SHI, J SHAN, and X LU, Modal identification of Shanghai World Financial Center both from free and ambient vibration response [J], Engineering Structures 36, 1426(2012).
|
[87] |
XIE B, LUO X Q, ZHANG Q L, et al. Dynamic response evaluation of the Shanghai Tower in along-and across-wind directions during super typhoon Lekima [J/OL]. Journal of Building Engineering, 2023, 65[2023-11-24]. https://doi.org/10.1016/j.jobe.2022.1058808.
|
[88] |
HE Y, LI Z, FU J, et al. Enhancing the performance of stochastic subspace identification method via energy-oriented categorization of modal components [J/OL]. Engineering Structures, 2021, 233[2023-11-24]. https://doi.org/j.engstruct.2021.111917.
|
[89] |
H S PARK, and B K OH, Real-time structural health monitoring of a supertall building under construction based on visual modal identification strategy [J], Automation in Construction 85, 273289(2018).
|
[90] |
F L ZHANG, H B XIONG, and W X SHI, et al.Structural health monitoring of Shanghai Tower during different stages using a Bayesian approach [J], Structural Control and Health Monitoring 23, 1113661384(2016).
|
[91] |
XU Y L, CHEN S, ZHANG R. Modal identification of Di Wang Building under typhoon York using the Hilbert-Huang transform method [J]. The Structural Design of Tall and Special Buildings, 2003, 12: 121-147.
|
[92] |
J P AMEZQUITA-SANCHEZ, H S PARK, and H ADELI, A novel methodology for modal parameters identification of large smart structures using MUSIC, empirical wavelet transform, and Hilbert transform [J], Engineering Structures 147, 148159(2017).
|
[93] |
WANG C, LI Z, HU L, et al. Field research on the wind- induced response of a super high-rise building under typhoon [J/OL]. Applied Sciences, 2019, 9(11)[2023-11-24]. https://doi.org/10.3390/app9112180.
|
[94] |
GUO Y, KWON D K, KAREEM A. Near-real-time hybrid system identification framework for civil structures with application to Burj Khalifa [J/OL]. Journal of Structural Engineering, 2016, 142(2)[2023-11-24]. https://doi.org/10.1061/(ASCE)ST.1943-541x.0001402.
|
[95] |
刘彦辉, 谭平, 周福霖, 等. 广州电视塔直线电机驱动的主动质量阻尼器动力特性研究[J]. 建筑结构学报, 2015, 36(4): 126-132.
|
[96] |
周云, 吴胜, 李家乐. 钢管叠层黏弹性阻尼器设计方法[J]. 建筑结构学报, 2023, 44(3): 79-86.
|
[97] |
LU X, ZHANG Q, WU W, et al. Data-driven two-level performance evaluation of eddy-current tuned mass damper for building structures using shaking table and field testing [J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34: 138-157.
|
[98] |
滕军, 幸厚冰. 京基100大厦AMD控制系统在线计算关键技术研究[J]. 振动与冲击, 2011, 30(11): 230-235.
|
[99] |
滕军, 陈朝骏, 幸厚冰, 等. 考虑结构高阶振型信息的AMD低维控制器设计[J]. 振动工程学报, 2016, 29(6): 1048-1056.
|